
1

CSE 421: Introduction to

Algorithms

Complexity and Representative
Problems

Paul Beame

Administrative

 Edstem discussion group:
 https://edstem.org/us/courses/3120/discussion/

 Discuss everything course-related except solutions to
current homework or anything about current exams.

 OK to ask for clarifications about the statement of current
homework problems, but not about their solutions.

 Reading
 This material is from Chapter 2.

 My office hour immediately after class today
 Rest of office hours set by Friday.

 Homework 1
 Out by Friday.

2

3

Measuring efficiency:
The RAM model

 RAM = Random Access Machine

 Time ≈ # of instructions executed in an
ideal assembly language

 each simple operation (+,*,-,=,if,call) takes

one time step

 each memory access takes one time step

4

Complexity analysis

 Problem size N

 Worst-case complexity: max # steps

algorithm takes on any input of size N

5

Complexity analysis

 Problem size N

 Worst-case complexity: max # steps

algorithm takes on any input of size N

 Best-case complexity: min # steps

algorithm takes on any input of size N

 Average-case complexity: avg # steps

algorithm takes on inputs of size N

6

Stable Matching

 Problem size
 N=2n2 words

 2n people each with a preference list of length n
 2n2log n bits

 specifying an ordering for each preference list takes nlog n bits

 Brute force algorithm
 Try all n! possible matchings

 Gale-Shapley Algorithm
 n2 iterations, each costing constant time

 For each man an array listing the women in preference order

 For each woman an array listing the preferences indexed by
the names of the men

 An array listing the current partner (if any) for each woman

 An array listing the preference index of the last woman each
man proposed to (if any)

7

Complexity

 The complexity of an algorithm associates a number

T(N), the worst/average-case/best time the algorithm

takes, with each problem size N.

 Mathematically,

 T is a function that maps positive integers giving

problem size to positive real numbers giving

number of steps.

8

Efficient = Polynomial Time

 Polynomial time

 Running time T(N) ≤ cNk+d for some c,d,k ≥ 0

 Why polynomial time?

 If problem size grows by at most a constant factor then

so does the running time

 E.g. T(2N) ≤ c(2N)k+d ≤ 2k(cNk+d)

 Polynomial-time is exactly the set of running times

that have this property

 Typical running times are small degree polynomials,

mostly less than N3, at worst N6, not N100

9

Complexity

Problem size N

T(N)

10

Complexity

Problem size N

T(N)

11

O-notation etc

 Given two positive functions f and g

 f(N) is O(g(N)) iff there is a constant c>0 so

that f(N) is eventually

always ≤ c g(N)

 f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0
as N gets large

 f(N) is Ω(g(N)) iff there is a constant ε>0 so

that f(N) is ≥ ε g(N) for infinitely

many values of N

 f(N) is Θ(g(N)) iff f(N) is O(g(N)) and f(N) is Ω(g(N))

Note: The definition of Ω is the same as “f(N) is not o(g(N))”

12

5 Representative Problems

 Interval Scheduling
 Single resource

 Reservation requests

 Of form “Can I reserve it from start time s to
finish time f?”

 s < f

13

h

e

b

Interval Scheduling

 Input. Set of jobs with start times and finish times.

 Goal. Find maximum cardinality subset of mutually compatible
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap

14

h

e

b

h

e

b

Interval Scheduling

 Input. Set of jobs with start times and finish times.

 Goal. Find maximum cardinality subset of mutually compatible
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap

15

Interval scheduling

 Formally
 Requests 1,2,…,n

 request i has start time si and finish time fi > si

 Requests i and j are compatible iff either

 request i is for a time entirely before request j

 fi ≤ sj

 or, request j is for a time entirely before request i

 fj ≤ si

 Set A of requests is compatible iff every pair of
requests i,j∈ A, i≠j is compatible

 Goal: Find maximum size subset A of compatible
requests

16

Interval Scheduling

 We’ll see that an optimal solution can be
found using a “greedy algorithm”

 Myopic kind of algorithm that seems to have no
look-ahead

 These algorithms only work when the problem has
a special kind of structure

 When they do work they are typically very efficient

17

Weighted Interval Scheduling

 Same problem as interval scheduling except
that each request i also has an associated
value or weight wi

 wi might be

 amount of money we get from renting out the
resource for that time period

 amount of time the resource is being used

18

Weighted Interval Scheduling

 Input. Set of jobs with start times, finish times, and weights.

 Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

19

Weighted Interval Scheduling

 Ordinary interval scheduling is a special case of this

problem

 Take all wi =1

 Problem is quite different though

 E.g. one weight might dwarf all others

 “Greedy algorithms” don’t work

 Solution: “Dynamic Programming”

 builds up optimal solutions from smaller problems using a
compact table to store them

20

Bipartite Matching

 A graph G=(V,E) is bipartite iff
 V consists of two disjoint pieces X and Y such

that every edge e in E is of the form (x,y) where
x∈X and y∈Y

 Similar to stable matching situation but in that
case all possible edges were present

 M⊆E is a matching in G iff no two edges in
M share a vertex

 Goal: Find a matching M in G of
maximum possible size

21

Bipartite Matching

 Input. Bipartite graph.

 Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

22

Bipartite Matching

 Input. Bipartite graph.

 Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

23

Bipartite Matching

 Models assignment problems
 X represents jobs, Y represents machines

 X represents professors, Y represents courses

 If |X|=|Y|=n
 G has perfect matching iff maximum matching has

size n

 Solution: polynomial-time algorithm using
“augmentation” technique
 also used for solving more general class of

network flow problems

24

Independent Set

 Given a graph G=(V,E)

 A set I⊆V is independent iff no two nodes in I are

joined by an edge

 Goal: Find an independent subset I in G of

maximum possible size

 Models conflicts and mutual exclusion

25

Independent Set

 Input. Graph.

 Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

26

Independent Set

 Input. Graph.

 Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

27

Independent Set

 Generalizes
 Interval Scheduling

 Vertices in the graph are the requests

 Vertices are joined by an edge if they are not
compatible

 Bipartite Matching

 Given bipartite graph G=(V,E) create new
graph G’=(V’,E’) where

 V’=E

 Two elements of V’ (which are edges in G) are joined
if they share an endpoint in G

28

Bipartite Matching
vs Independent Set

1

2 3
4

5 6

7

1 2

3

4

5
6

78

8

9 9

G=(U∪V,E)
G’=(V’,E’)

29

Independent Set

 No polynomial-time algorithm is known
 But to convince someone that there was a large

independent set all you’d need to do is show it to
them

 they can easily convince themselves that the set is large
enough and independent

 Convincing someone that there isn’t one seems
much harder

 We will show that Independent Set is
NP-complete
 Class of all the hardest problems that have the

property above

30

Competitive Facility Location

 Two players competing for market share in a
geographic area
 e.g. McDonald’s, Burger King

 Rules:
 Region is divided into n zones, 1,…,n

 Each zone i has a value bi

 Revenue derived from opening franchise in that
zone

 No adjacent zones may contain a franchise

 i.e., zoning regulations limit density
 Players alternate opening franchises

 Find: Given a target total value B is there a strategy
for the second player that always achieves ≥ B?

31

Competitive Facility Location

 Model geography by

 A graph G=(V,E) where

 V is the set {1,…,n} of zones

 E is the set of pairs (i,j) such that i and j

are adjacent zones

 Observe:

 The set of zones with franchises will form

an independent set in G

32

Competitive Facility Location

10 1 5 15 5 1 5 1 15 10

Target B = 20 achievable ?

What about B = 25 ?

33

Competitive Facility Location

 Checking that a strategy is good seems hard
 You’d have to worry about all possible responses

at each round!

 a giant search tree of possibilities

 Problem is PSPACE-complete
 Likely strictly harder than NP-complete problems

 PSPACE-complete problems include

 Game-playing problems such as n×n chess
and checkers

 Logic problems such as whether quantified
boolean expressions are always true

 Verification problems for finite automata

34

Five Representative Problems

 Variations on a theme: independent set.

 Interval scheduling: O(n log n) greedy algorithm.

 Weighted interval scheduling: O(n log n) dynamic
programming algorithm.

 Bipartite matching: O(nk) max-flow based
algorithm.

 Independent set: NP-complete.

 Competitive facility location: PSPACE-complete.

