CSE 421: Introduction to Algorithms

Complexity and Representative Problems

Paul Beame

Administrative

- Edstem discussion group:
- https://edstem.org/us/courses/3120/discussion/
- Discuss everything course-related except solutions to current homework or anything about current exams.
- OK to ask for clarifications about the statement of current homework problems, but not about their solutions.
- Reading
- This material is from Chapter 2.
- My office hour immediately after class today
- Rest of office hours set by Friday.
- Homework 1
- Out by Friday.

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time \approx \# of instructions executed in an ideal assembly language
- each simple operation (+,*,-,=,if,call) takes one time step
- each memory access takes one time step

Complexity analysis

- Problem size N
- Worst-case complexity: max \# steps algorithm takes on any input of size \mathbf{N}

Complexity analysis

- Problem size N
- Worst-case complexity: max \# steps algorithm takes on any input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on any input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on inputs of size \mathbf{N}

Stable Matching

- Problem size
- $\mathrm{N}=2 \mathrm{n}^{2}$ words
- $2 n$ people each with a preference list of length n
- $2 n^{2} \log n$ bits
- specifying an ordering for each preference list takes nlog \mathbf{n} bits
- Brute force algorithm
- Try all n! possible matchings
- Gale-Shapley Algorithm
- n^{2} iterations, each costing constant time
- For each man an array listing the women in preference order
- For each woman an array listing the preferences indexed by the names of the men
- An array listing the current partner (if any) for each woman
- An array listing the preference index of the last woman each man proposed to (if any)

Complexity

- The complexity of an algorithm associates a number $\mathrm{T}(\mathrm{N})$, the worst/average-case/best time the algorithm takes, with each problem size \mathbf{N}.
- Mathematically,
- T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Efficient = Polynomial Time

- Polynomial time
- Running time $\mathbf{T}(\mathbf{N}) \leq \mathbf{c N}^{\mathrm{k}}+\mathbf{d}$ for some $\mathbf{c}, \mathbf{d}, \mathbf{k} \geq \mathbf{0}$
- Why polynomial time?
- If problem size grows by at most a constant factor then so does the running time
- E.g. $\mathrm{T}(2 \mathrm{~N}) \leq \mathrm{c}(2 \mathrm{~N})^{\mathrm{k}}+\mathrm{d} \leq 2^{\mathrm{k}}\left(\mathrm{cN}^{\mathrm{k}}+\mathrm{d}\right)$
- Polynomial-time is exactly the set of running times that have this property
- Typical running times are small degree polynomials, mostly less than $\mathbf{N}^{\mathbf{3}}$, at worst \mathbf{N}^{6}, not \mathbf{N}^{100}

Complexity

Complexity

Problem size N

O-notation etc

- Given two positive functions f and g
- $f(N)$ is $O(g(N))$ iff there is a constant $c>0$ so that $f(N)$ is eventually always $\leq \mathrm{c} \boldsymbol{g}(\mathrm{N})$
- $f(N)$ is $o(g(N))$ iff the ratio $f(N) / g(N)$ goes to 0 as \mathbf{N} gets large
- $\mathrm{f}(\mathrm{N})$ is $\Omega(\mathrm{g}(\mathrm{N})$) iff there is a constant $\varepsilon>0$ so that $f(N)$ is $\geq \varepsilon g(N)$ for infinitely many values of N
- $f(N)$ is $\Theta(g(N))$ iff $f(N)$ is $O(g(N))$ and $f(N)$ is $\Omega(g(N))$

Note: The definition of Ω is the same as " $\mathrm{f}(\mathbf{N})$ is not $\mathbf{o}(\mathbf{g}(\mathbf{N}))$ "

5 Representative Problems

- Interval Scheduling
- Single resource

- Reservation requests
- Of form "Can I reserve it from start time s to finish time f?"
$-\mathbf{s}<\mathbf{f}$

Interval Scheduling

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

Interval Scheduling

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.
jobs don't overlap

Interval scheduling

- Formally
- Requests 1,2,...,n
- request \boldsymbol{i} has start time $\mathbf{s}_{\mathbf{i}}$ and finish time $\boldsymbol{f}_{\mathbf{i}}>\mathbf{s}_{\mathbf{i}}$
- Requests i and jare compatible iff either
- request i is for a time entirely before request j
- $f_{i} \leq s_{j}$
- or, request \mathbf{j} is for a time entirely before request \mathbf{i}
$-f_{j} \leq s_{i}$
- Set A of requests is compatible iff every pair of requests $i, j \in \mathbf{A}, i \neq j$ is compatible
- Goal: Find maximum size subset \mathbf{A} of compatible requests

Interval Scheduling

- We'll see that an optimal solution can be found using a "greedy algorithm"
- Myopic kind of algorithm that seems to have no look-ahead
- These algorithms only work when the problem has a special kind of structure
- When they do work they are typically very efficient

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight $\mathbf{w}_{\mathbf{i}}$
- $\mathbf{w}_{\mathbf{i}}$ might be
- amount of money we get from renting out the resource for that time period
- amount of time the resource is being used

Weighted Interval Scheduling

- Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

- Ordinary interval scheduling is a special case of this problem
- Take all $\mathbf{w}_{\mathbf{i}}=1$
- Problem is quite different though
- E.g. one weight might dwarf all others
- "Greedy algorithms" don’t work
- Solution: "Dynamic Programming"
- builds up optimal solutions from smaller problems using a compact table to store them

Bipartite Matching

A graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ is bipartite iff

- V consists of two disjoint pieces X and Y such that every edge \mathbf{e} in \mathbf{E} is of the form (\mathbf{x}, \mathbf{y}) where $\mathbf{x} \in \mathbf{X}$ and $\mathbf{y} \in \mathbf{Y}$
- Similar to stable matching situation but in that case all possible edges were present
- ME is a matching in \mathbf{G} iff no two edges in M share a vertex
- Goal: Find a matching Min G of maximum possible size

Bipartite Matching

- Input. Bipartite graph.
- Goal. Find maximum cardinality matching.

Bipartite Matching

- Input. Bipartite graph.
- Goal. Find maximum cardinality matching.

Bipartite Matching

- Models assignment problems
- X represents jobs, Y represents machines
- X represents professors, Y represents courses
- If $|\mathbf{X}|=|\mathbf{Y}|=\mathbf{n}$
- G has perfect matching iff maximum matching has size n
- Solution: polynomial-time algorithm using "augmentation" technique
- also used for solving more general class of network flow problems

Independent Set

- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- A set $\mathrm{I} \subseteq \mathrm{V}$ is independent iff no two nodes in I are joined by an edge
- Goal: Find an independent subset I in G of maximum possible size
- Models conflicts and mutual exclusion

Independent Set

- Input. Graph.
- Goal. Find maximum cardinality independent set.

Independent Set

- Input. Graph.
- Goal. Find maximum cardinality independent set.

Independent Set

- Generalizes
- Interval Scheduling
- Vertices in the graph are the requests
- Vertices are joined by an edge if they are not compatible
- Bipartite Matching
- Given bipartite graph $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ create new graph $\mathbf{G}^{\prime}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where
- V'=E
- Two elements of V^{\prime} (which are edges in \mathbf{G}) are joined if they share an endpoint in \mathbf{G}

Bipartite Matching vs Independent Set

$\mathbf{G}=(\mathbf{U} \cup \mathbf{V}, E)$

$G^{\prime \prime}=\left(V^{9}, E^{9}\right)$

Independent Set

- No polynomial-time algorithm is known
- But to convince someone that there was a large independent set all you'd need to do is show it to them
- they can easily convince themselves that the set is large enough and independent
- Convincing someone that there isn't one seems much harder
- We will show that Independent Set is NP-complete
- Class of all the hardest problems that have the property above

Competitive Facility Location

- Two players competing for market share in a geographic area
- e.g. McDonald's, Burger King
- Rules:
- Region is divided into \mathbf{n} zones, $\mathbf{1}, \ldots, \mathrm{n}$
- Each zone i has a value \mathbf{b}_{i}
- Revenue derived from opening franchise in that zone
- No adjacent zones may contain a franchise
- i.e., zoning regulations limit density
- Players alternate opening franchises
- Find: Given a target total value B is there a strategy for the second player that always achieves $\geq B$?

Competitive Facility Location

- Model geography by
- A graph $\mathbf{G}=(\mathbf{V}, E)$ where
- V is the set $\{\mathbf{1}, \ldots, n\}$ of zones
- E is the set of pairs (i, j) such that i and j are adjacent zones
- Observe:
- The set of zones with franchises will form an independent set in \mathbf{G}

Competitive Facility Location

Target $\mathrm{B}=20$ achievable ?

What about $\mathbf{B =} 25$?

Competitive Facility Location

- Checking that a strategy is good seems hard
- You'd have to worry about all possible responses at each round!
- a giant search tree of possibilities
- Problem is PSPACE-complete
- Likely strictly harder than NP-complete problems
- PSPACE-complete problems include
- Game-playing problems such as $\mathbf{n} \times \mathbf{n}$ chess and checkers
- Logic problems such as whether quantified boolean expressions are always true
- Verification problems for finite automata

Five Representative Problems

- Variations on a theme: independent set.
- Interval scheduling: $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ greedy algorithm.
- Weighted interval scheduling: O(n log n) dynamic programming algorithm.
- Bipartite matching: O(nk) max-flow based algorithm.
- Independent set: NP-complete.
- Competitive facility location: PSPACE-complete.

