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CSE 421:  Introduction to 

Algorithms

Complexity and Representative 
Problems

Paul Beame



Administrative

 Edstem discussion group:
 https://edstem.org/us/courses/3120/discussion/

 Discuss everything course-related except solutions to 
current homework or anything about current exams. 

 OK to ask for clarifications about the statement of current 
homework problems, but not about their solutions.

 Reading
 This material is from Chapter 2.

 My office hour immediately after class today 
 Rest of office hours set by Friday.

 Homework 1
 Out by Friday.
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Measuring efficiency:
The RAM model

 RAM = Random Access Machine

 Time ≈ # of instructions executed in an 
ideal assembly language

 each simple operation (+,*,-,=,if,call) takes 

one time step

 each memory access takes one time step
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Complexity analysis

 Problem size N

 Worst-case complexity: max # steps 

algorithm takes on any input of size N
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Complexity analysis

 Problem size N

 Worst-case complexity: max # steps 

algorithm takes on any input of size N

 Best-case complexity: min # steps 

algorithm takes on any input of size N

 Average-case complexity: avg # steps 

algorithm takes on inputs of size N
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Stable Matching

 Problem size
 N=2n2 words

 2n people each with a preference list of length n
 2n2log n bits

 specifying an ordering for each preference list takes  nlog n bits

 Brute force algorithm
 Try all n! possible matchings

 Gale-Shapley Algorithm
 n2 iterations, each costing constant time

 For each man an array listing the women in preference order

 For each woman an array listing the preferences indexed by 
the names of the men

 An array listing the current partner (if any) for each woman

 An array listing the preference index of the last woman each 
man proposed to (if any)
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Complexity

 The complexity of an algorithm associates a number 

T(N), the worst/average-case/best time the algorithm 

takes, with each problem size N.

 Mathematically,

 T is a function that maps positive integers giving 

problem size to positive real numbers giving 

number of steps.



8

Efficient = Polynomial Time

 Polynomial time

 Running time T(N) ≤ cNk+d for some c,d,k ≥ 0

 Why polynomial time?

 If problem size grows by at most a constant factor then 

so does the running time

 E.g. T(2N) ≤ c(2N)k+d ≤ 2k(cNk+d) 

 Polynomial-time is exactly the set of running times 

that have this property

 Typical running times are small degree polynomials, 

mostly less than N3, at worst N6, not N100
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Complexity

Problem size    N

T(N)
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Complexity

Problem size  N

T(N)
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O-notation etc

 Given two positive functions f and g

 f(N) is O(g(N)) iff there is a constant c>0 so        

that  f(N) is eventually  

always ≤ c g(N)

 f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0
as N gets large

 f(N) is Ω(g(N)) iff there is a constant ε>0 so        

that f(N) is ≥ ε g(N) for infinitely 

many values of N

 f(N) is Θ(g(N)) iff f(N) is O(g(N)) and f(N) is Ω(g(N))

Note: The definition of Ω is the same as “f(N) is not o(g(N))”
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5 Representative Problems

 Interval Scheduling
 Single resource

 Reservation requests

 Of form “Can I reserve it from start time s to 
finish time f?”

 s < f
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Interval Scheduling

 Input. Set of jobs with start times and finish times.

 Goal. Find maximum cardinality subset of mutually compatible 
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11
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d

jobs don't overlap
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Interval Scheduling

 Input. Set of jobs with start times and finish times.

 Goal. Find maximum cardinality subset of mutually compatible 
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap
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Interval scheduling

 Formally
 Requests 1,2,…,n

 request i has start time si and finish time fi > si

 Requests i and j are compatible iff either

 request i is for a time entirely before request j

 fi ≤ sj

 or, request j is for a time entirely before  request i

 fj ≤ si

 Set A of requests is compatible iff every pair of 
requests i,j∈ A, i≠j is compatible

 Goal: Find maximum size subset A of compatible    
requests
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Interval Scheduling

 We’ll see that an optimal solution can be 
found using a “greedy algorithm”

 Myopic kind of algorithm that seems to have no 
look-ahead

 These algorithms only work when the problem has 
a special kind of structure

 When they do work they are typically very efficient
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Weighted Interval Scheduling

 Same problem as interval scheduling except 
that each request i also has an associated 
value or weight wi

 wi might be

 amount of money we get from renting out the 
resource for that time period

 amount of time the resource is being used
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Weighted Interval Scheduling

 Input. Set of jobs with start times, finish times, and weights.

 Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11
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Weighted Interval Scheduling

 Ordinary interval scheduling is a special case of this 

problem

 Take all wi =1

 Problem is quite different though

 E.g. one weight might dwarf all others

 “Greedy algorithms” don’t work

 Solution: “Dynamic Programming” 

 builds up optimal solutions from smaller problems using a 
compact table to store them 
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Bipartite Matching

 A graph G=(V,E) is bipartite iff
 V consists of two disjoint pieces X and Y such 

that every edge e in E is of the form (x,y) where 
x∈X and y∈Y

 Similar to stable matching situation but in that 
case all possible edges were present

 M⊆E is a matching in G iff no two edges in 
M share a vertex

 Goal: Find a matching M in G of   
maximum possible size
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Bipartite Matching

 Input. Bipartite graph.

 Goal. Find maximum cardinality matching.

C
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Bipartite Matching

 Input. Bipartite graph.

 Goal. Find maximum cardinality matching.
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Bipartite Matching

 Models assignment problems
 X represents jobs, Y represents machines

 X represents professors, Y represents courses

 If |X|=|Y|=n
 G has perfect matching iff maximum matching has 

size n

 Solution: polynomial-time algorithm using 
“augmentation” technique 
 also used for solving more general class of 

network flow problems
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Independent Set

 Given a graph G=(V,E)

 A set I⊆V is independent iff no two nodes in I are 

joined by an edge

 Goal: Find an independent subset I in G of 

maximum possible size

 Models conflicts and mutual exclusion
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Independent Set

 Input. Graph.

 Goal. Find maximum cardinality independent set.
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Independent Set

 Input. Graph.

 Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4



27

Independent Set

 Generalizes
 Interval Scheduling

 Vertices in the graph are the requests

 Vertices are joined by an edge if they are not
compatible

 Bipartite Matching

 Given bipartite graph G=(V,E) create new 
graph G’=(V’,E’) where

 V’=E

 Two elements of V’ (which are edges in G) are joined 
if they share an endpoint in G
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Bipartite Matching                                       
vs Independent Set 
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Independent Set

 No polynomial-time algorithm is known
 But to convince someone that there was a large 

independent set all you’d need to do is show it to 
them

 they can easily convince themselves that the set is large 
enough and independent

 Convincing someone that there isn’t one seems 
much harder

 We will show that Independent Set is         
NP-complete
 Class of all the hardest problems that have the 

property above
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Competitive Facility Location

 Two players competing for market share in a 
geographic area
 e.g. McDonald’s, Burger King

 Rules:
 Region is divided into n zones, 1,…,n

 Each zone i has a value bi

 Revenue derived from opening franchise in that 
zone

 No adjacent zones may contain a franchise

 i.e., zoning regulations limit density
 Players alternate opening franchises

 Find: Given a target total value B is there a strategy 
for the second player that always achieves ≥ B?
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Competitive Facility Location

 Model geography by

 A graph G=(V,E) where

 V is the set {1,…,n} of zones

 E is the set of pairs (i,j) such that i and j

are adjacent zones

 Observe: 

 The set of zones with franchises will form 

an independent set in G
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Competitive Facility Location

10       1        5       15      5        1        5       1      15       10

Target B = 20 achievable ?

What about B = 25 ?
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Competitive Facility Location

 Checking that a strategy is good seems hard
 You’d have to worry about all possible responses 

at each round!

 a giant search tree of possibilities

 Problem is PSPACE-complete
 Likely strictly harder than NP-complete problems

 PSPACE-complete problems include

 Game-playing problems such as n×n chess 
and checkers

 Logic problems such as whether quantified 
boolean expressions are always true

 Verification problems for finite automata
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Five Representative Problems

 Variations on a theme:  independent set.

 Interval scheduling:  O(n log n) greedy algorithm.

 Weighted interval scheduling:  O(n log n) dynamic 
programming algorithm.

 Bipartite matching:  O(nk) max-flow based 
algorithm.

 Independent set:  NP-complete.

 Competitive facility location:  PSPACE-complete.


