Reference Sheet

Unless explicitly stated otherwise, you may use any algorithm discussed in this class or 332 to solve a problem.
In particular, you may use any of these functions as libraries (this list is not exhaustive).

Graphs

TwoColor(G) returns True if G can be 2-colored (i.e., is bipartite), False otherwise. Running time ©(m + n)

ConnectedComponents(G) finds the connected components of an undirected graph . You may assume you
get any reasonable representation of this information. Running time ©(m + n)

StronglyConnectedComponents(() finds the strongly connected components of a directed graph GG. You may
assume you get any reasonable representation of the information. Running time O(m + n)

TopologicalSort(G) returns a list of vertices of a directed graph G in topological order, or null if the graph
has a cycle. Running time O(m + n)

CondensationGraph(G) returns the condensation of a directed graph G (a.k.a., the “meta-graph” of G or “graph
of SCCs of (). Running time ©(m + n)

Prims(G) finds the minimum spanning tree of a (weighted, undirected) graph G. Running time ©(m logn)

Dijkstra(G, s) finds the length of the shortest path from s to every vertex in a (non-negative) weighted,
directed graph G. Running time ©(m + nlogn). Finds the path itself for any target in O (n) additional time.

Bellman-Ford(G, s) finds the length of the shortest path from s to every vertex in a weighted, directed graph
G. Detects negative weight cycles, if any. Running time ©(mn). Can find the path itself for any target in
O (n) additional time.

Floyd-Warshall(G) finds the length of the shortest path between all pairs of vertices in a weighted, directed
graph G. Detects negative weight cycles, if any. Running time ©(n?). Can find the path itself for any pair in
O (n) additional time.

Ford-Fulkerson(G, s,) Finds a maximum flow from s to ¢ and a minimum cut separating s and ¢. Running
time O(Ef), where f is the value of the flow.

Arrays

QuickSelect(A, k) returns the value which would be at index k of A if A were sorted. Running time ©(n)
MaxSubarraySum(A) returns the sum of the maximum sum (contiguous) subarray of A. Running time ©(n)

MergeSort(A) returns the sorted version of A. Running time O(nlogn)

Others

Gale-Shapley(riderPrefs, horsePrefs) returns the rider-optimal stable matching.
Running time ©(n?) for n riders and n horses

2dClosestPoints(A) returns the distance between the two closest points of A (where A contains vectors in
R?). Running time O(nlogn)

EditDistance(x, y) returns the edit distance between strings x and y.

Running time ©(m + n) for strings of length m, n

LP-Solver(vars, constraints, objective) returns the optimal feasible point for a linear program. Running
time O(n?) for an input written with n bits.

There’s more information on the back!

Other information

Master Theorem For a recurrence of the following form, where a, b, ¢, d are constants

T(n) d if n is at most some constant
n) =
aT (%) + f(n) otherwise

Where f(n) is © (n“ . logk(n)) fork>0,a€Z%,c>1
« Iflog,(a) < c then T(n) € © (nc : logk(n)>

(nc -loght? (n))

(nloBs (@)

* Iflog,(a) = cthenT(n) € ©
* Iflog,(a) > cthenT'(n) € ©

DFS Edge Classification For directed graphs

Edge type | Definition (u,v) is of this type if and only if
Tree Edges forming the DFS tree v was not seen before we processed (u, v)

Forward | From ancestor to descendant in tree u, v both seen; u.start < v.start < v.end < u.end
Back From descendant to anscestor in tree u, v both seen; v.start < u.start < u.end < v.end
Cross u, v have no ancestor/descendant relationship | u,v both seen; v.start < v.end < u.start < u.end

NP-Complete Problems The following problems are NP-complete

* k-COLOR: Given a graph G = (V,E) and an integer k (where k¥ > 3), return true if there is a function
f:V —={1,.k} such that if (u,v) € E then f(u) # f(v).

* VERTEX-COVER: Given a graph G = (V, E) and an integer k, return true if there is a set of vertices S, such
that |S| < kand V(u,v) e E:ueSVveS.

* CLIQUE:Given a graph G = (V, E) and an integer k, return true if there is a set of vertices S, such that |S| > k
and Vu,v : [u v Au,v € S| = (u,v) € E.

* IND-SET:Given a graph G = (V, E) and an integer k, return true if there is a set of vertices S, such that |S| > k
and Yu,v : [u v Au,v € S] = (u,v) € E.

* 3-SAT: Given an expression in CNF form, where each clause contains exactly three literals, return true if there
is a setting of the variables that causes the expression to evaluate to true.

* HAM-PATH: Given a directed graph G, return true if there is a Hamiltonian Path in G, that is a path that visits
each vertex exactly once.

