CSE 421: Sample Final Exam

Name:	NetID:	@uw.edu

Instructions

- This Sample Final was assembled from problems given in previous 421 exams.
- The exam here is approximately the length of an 110 minute exam. Yours may be slightly longer or shorter.
- You are permitted one piece of 8.5x11 inch paper with handwritten notes (notes are allowed on both sides of the paper).
- You may not use a calculator or any other electronic devices during the exam.

Advice

- Move around the exam; if you get stuck on a problem, save it until the end.
- Proofs are not required unless otherwise stated.
- Remember to take deep breaths.

Question	Max points
True or False	0
Interval Scheduling	0
Group Test	0
Number of Paths in a DAG	0
Vertex Cut	0
Number Partition	0
Total	???

1. True or False

For each of the following problems, circle **True** or **False**. You do not need to justify your answer.

- (a) If f and g are two different flows on the same flow graph (G, s, t) and if $v(f) \ge v(g)$ then every edge e in G has $f(e) \ge g(e)$. **True** False
- (b) If f is a maximum flow on a flow graph (G = (V, E), s, t) and B is the set of vertices in V that can reach t in the residual graph G_f then (V B, B) is a minimum capacity s t cut in G. **True False**
- (c) If f is a maximum flow on a flow graph G, s, t and (S, T) is a minimum capacity s t cut in G then every edge e having endpoints on different sides of (S, T) has f(e) equal to the capacity of e. **True False**
- (d) If problem B is NP-hard and $A \leq_P B$ then A is NP-hard. **True** False
- (e) If problem *A* is *NP*-hard and $A \leq_P B$ then *B* is *NP*-hard. **True False**
- (f) If $P \neq NP$ then every problem in NP requires exponential time. **True** False
- (g) If problem A is in P then $A \leq_P B$ for every problem B in NP. **True** False
- (h) If G is a weighted graph with n vertices and m edges that does not contain a negative-weight cycle, then the iteration of the Bellman-Ford algorithm will reach a fixed point in at most n-1 rounds. **True False**
- (i) If G is a weighted graph with n vertices and m edges that does contain a negative-weight cycle, then for every vertex v in G, the shortest path from v to t in G containing n edges is strictly shorter than the shortest path from v to t in G containing n-1edges. **True** False

2. Interval Scheduling

The $two\ processor$ interval scheduling problem takes as input a sequence of request intervals $(s_1,f_1),...,(s_n,f_n)$ just like the unweighted interval scheduling problem except that it produces two disjoint sets $A_1,A_2\subset [n]$ such that all requests in A_1 are compatible with each other and all requests in A_2 are compatible with each other and $|A_1\cup A_2|$ is as large as possible. $(A_1$ might contain requests that are incompatible with requests in A_2). Does the following greedy algorithm produce optimal results? If yes, argue why it does; if no, produce a counter example.

```
Sort requests by increasing finish time A_1=\emptyset A_2=\emptyset while there is any request (s_i,f_i) compatible with either A_1 or A_2 do: Add the first unused request, if any, compatible with A_1 to A_1. Add the first unused request, if any, compatible with A_2 to A_2. end while
```

3. Group Test

You are given a subsequence of n bits $x_1,...,x_n \in \{0,1\}$. Your output is to be either

- any i such that $x_i = 1$ or
- the value 0 if the input is all 0's

The only operation you are allowed to use to access the inputs is a function Group-Test where

$$\mathbf{Group\text{-}Test}(i,j) = \begin{cases} 1 & \text{if some bits } x_i,...,x_j \text{ has value } 1 \\ 0 & \text{if all bits } x_i,...,x_j \text{ have value } 0 \end{cases}$$

(a) Design a divide and conquer algorithm to solve the problem that uses only $O(\log n)$ calls to **Group-Test** in the worst case. Your algorithm should never access the x_i directly.

(b) Briefly justify your bound on the number of calls.

4. Number of Paths in a DAG

You are given a directed acyclic graph G=(V,E) and a node $t\in V$. Design a linear time algorithm to compute for each vertex $v\in V$, the number of different paths from v to t in G. Analyze its running time in terms of n=|V| and m=|E|.

(a)	Give the optimization	formula for	computing t	the number	of paths	from i to t	t
-----	-----------------------	-------------	-------------	------------	----------	-----------------	---

(b) Give pseudocode for the (iterative) dynamic program for computing the number of different paths from v to t in G for every vertex $v \in V$.

(c) Give the running time of your algorithm.

5. Vertex Cut

Let G=(V,E) be a directed graph with distinguished vertices s and t. Describe an algorithm to compute a minimum sized set of vertices to remove to separate s and t. Your algorithm should identify the actual vertices to remove (and not just determine the minimum number of vertices that could be removed).

6. Number Partition

The $Number\ Partition$ problem asks, given a collection of non-negative integers $y_1,...,y_n$ whether or not it is possible to partition these numbers into two groups so that the sum in each group is the same. Prove that $Number\ Partition$ is NP-complete by solving the following problems.

(a) Show that Number Partition is in NP.

(b) Show that $Subset\ Sum \leq_P Number\ Partition$.

Recall that in the $Subset\ Sum$ problem, we are given a collection of integers (which can be positive and negative), we want to see if it is possible to find a subset that sums up to 1.

Hint: Given an input to $Subset\ Sum$ include two large numbers whose size differs by S-2 where S is the sum of all input numbers.