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Integer Program for Vertex Cover

Given a graph G=(V,E) with costs c,, on the vertices. Find a
vertex cover of G with minimum cost, i.e., min )¢ C,,

Write LP with Integrality Constraint:
« Variables: One variable x,, for each vertex v
 Bound: x, € {0,1}

« Edge cover Constraints: x,, + x,, = 1 for every edge
(u,v) EE

* Obj: min },, c,x,,



IP for Vertex Cover

min 2 CyXy

v

s.t., x,+x,=21 V(uv)€EE
x, € {0,1} VvveV

IP is NP-complete general!
Fact: But there are fast algorithms in
Pf: practice that often work

liftves Is feasible, so
0 0. W.

OPT-IP < Min Vertex Cover
* For optimum solution x, the § = {v:x, = 1} is a
vertex cover

« For min vertex cover S, x,, = {

Min Vertex Cover < OPT-IP



LP Relaxation Vertex Cover

min 2 CyXy

v

s.t., x,+x,=21 V(uv)€EE
0<x,<1 VvEeV

Fact: OPT-LP < Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?



Bad Optimum solutions

min 2 CyXy

v

s.t., x,+x,=21 V(uv)€EE
0<x,<1 VvEeV

A feasible solution:
|:> Set x, = 0.5 for all v
in the complete graph

If c, = 1 for all v, then
K;,, complete graph Min vertex cover=n — 1
But OPT LP=n/2.
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Approximation Alg for Vertex Cover

Given a graph G=(V,E) with costs c;, on the edges. Find a
vertex cover of G with minimum cost, i.e., min ), ,c5 ¢,

Thm: There is a 2-approximation Alg for weighted vertex
cover.

ALG: Solve LP. Let S = {v:x, = 0.5}. Output S.

Pf. First, for every edge (u,v), x, + x, = 1 So at least one
Isin S. So, S is a vertex cover.

Second,
2 Cy < z c,(2x,) < 20PTLP <2Min Vertex Cov

VES VES
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Intro to Duality

max X1 + 2x5
s.t., x1+3x, <2
2x1 +2x, <3

X1,Xp =0

Optimum solution: x; = 5/4 and x, = 1/4 with value x; + 2x, = 7/4
How can you prove an upper-bound on the optimum?

First attempt: Since x4,x, = 0
X1+ 2y, <xq1+3xy; <2

Second attempt:
7
X1+ 2x, < (x1 + 3x,) + = (2x1 + 2x,) < = (2) + — (3) =3
Third attempt:
1
X1+ 2%y < (x1 + 3x5) + — (2x1 + 2x,) < = (2) + 1(3) = —



Dual Certificate

max x1 + 2x,
s.t., x;+3x, <2 V1
2x1 + 2x, <3 Y2

X1,X2 =0

Goal: Minimize 2y, + 3y,

But, we must make sure the sum of the LHS is at most
objective, i.e.,
X1 -+ Z.X'Z < yl(xl + 3X2) + yz(le + ZXZ)
In other words,
2<3-y1+2-y,=
Finally, y;,y, = 0 (else the direction of inequalities change)



Dual Program

max X1 + 2x5
s.t., x1+3x, <2
2x1 + 2x, < 3

X1,Xy = 0

OPT. x; =5/4and x, = 1/4
Value 7/4

min 2y, + 3y,
s.t., y;+2y, =1
3y, + 2y, = 2

V1, Y2 20

OPT.y;, =1/2and y, = 1/4
Value 7/4
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Dual of Standard LP

max (c,x)
s.t., {(ay,x) < by
<a21x> S b2

(am;x> S bm
X1y Xy =0

max  {c,Xx)
s.t., Ax<b
x =0

Primal

V1
Y2

Ym

min (b,y)
s.t., ay1tt+apiym=¢

A12Y1 + o+ Ap2Ym = C

A1 nY1 Tt AmnYm => Cn

Y1, Ym =0
min (b, y)
s.t., ATy >b
y=0
Dual
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Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every
solution to the dual
(c,x) <(b,y)

Thm (strong duality): If primal has a solution and dual has a
solution then optimum of primal is equal to optimum of dual
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Dual of Max-Flow

max Z xe
e outofs

S.t. z xe=z X Vv FS,t
eoutof v eintov

x, < c(e) Ve

Xe = 0 Ve
min (c,a)

s.t., a, +b, =1 e = (s,v)

ae — b, =0 e=t)

a, + b, —b, >0 othere = (u,v)
a, = 0 Ve

b,

Ae
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min (c,a)

s.t., e + by, =1 e = (s,v)
ae — b, =0 e =(v,t)
a, + b, — b, >0 othere = (u,v)
a, =0 Ve

Vs

min (c,a)
s.t., a, =max(0,1—b,) e =(s,v)
a, = max(0, b,) e=(vt)

a, = max(0,b, — b,) othere = (u,v)
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min (c,a)
s.t., a, =max(0,1—b,) e = (s,v)
a, = max(0, b,) e =(v,t)
a, = max(0,b, — b,) othere = (u,v)

Lem:In OPT 0 < b, <1 forallv
Pf. If not, move up/down the
value only decreases
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min (c,a)
S.t., bS=1,bt=0
0<b,<1

a, = max(0,b, —b,) e = (u,v)

Lem:InOPT 0 < b, <1forallv

Pf. If not, move up/down the
value only decreases

Lem: In OPT b, € {0,1} for all v

Pf. If not, chooseaur. 0 <t <1

If b, >t setb, =1 else set b, = 0.
Then, the expected value of
resulting solution sames as OPT.
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min (c,a)
s.t., b =1,b =0
0<b,<1
a, = max(0, b, —b,) othere = (u,v)

Lem:InOPT 0 < b, <1forallv

Pf. If not, move up/down the
value only decreases

Lem: In OPT b, € {0,1} for all v

Pf: If not, chooseaur. 0<t<1

If b, >t setb, =1 else set b, = 0.
Then, the expected value of
resulting solution sames as OPT.

b =1
A MAiA%
®

O
O
O
e ©
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min
S. t.,

(c,a)
b, =1,b; =0
b, € {0,1}
a, = max(0, b, —b,) othere = (u,v)

Min Cut!
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Beyond LP: Convex Programming

A function f:R - R is convex if f" = 0.

e.g., f(x) = x=.

A function f: R% - R is convex if V2f = 0

min f(x)
S. t., gl(X) < bl
Convex Program g2(x) < b,
Im(x) < by,

f and g4, ..., g, must be convex.

> and = are not allows!
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max
S.t.,

Example

C1X1 —+ CrX»
x4+ x5 <1
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Summary (Linear Programming)

Linear programming is one of the biggest advances in 20%
century

It is being used in many areas of science: Mechanics,
Physics, Operations Research, and in CS: Al, Machine
Learning, Theory, ...

Almost all problems that we talked can be solved with LPs,
Why not use LPs?

Combinatorial algorithms are typically faster

« They exhibit a better understanding of worst case instances of a
problem

« They give certain structural properties, e.g., Integrality of Max-flow when
capacities are integral

There is rich theory of LP-duality which generalizes max-flow
min-cut theorem
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