
CSE421: Introduction to Algorithms January 26, 2022

Homework 4

Yin Tat Lee Due: Feb 2, 2022 (before class)

Unless otherwise mentioned, you always need to show your algorithm’s runtime and prove that
it outputs the correct answer. See Homework Guideline on Ed for more details.

1. (10 Marks) Solve the following recurrences. Some questions cannot be solved by the master
theorem. (No proof is required)

(1) T (n) = T (n/2) + 2

(2) T (n) = 2T (n/2) + n

(3) T (n) = 3T (n/2) + n4

(4) T (n) = 7T (n/2) + n2

(5) T (n) = 8T (n/2) + n2 log3 n

2. (10 Marks) Suppose you are given a sequence of n objects x1, x2, . . . , xn, but you only have
access to them through an oracle that, given i and j, can determine if xi = xj or not. Design
an algorithm that outputs whether there exists an index i such that there are strictly greater
than n

3 objects in the sequence x1, . . . , xn that are equal to xi. Your algorithm must run in
time O(n log n) (and make at most O(n log n) calls to the oracle).

3. (10 Marks) Let G = (V,E) be an undirected graph and let w(e) ≥ 0 for all edge weights for
e ∈ E. Recall that a subset M ⊆ E is called a matching if no two edges in M share a node.
The Maximum Weight Matching problem consists of finding a matching M so that the weight
w(M) :=

∑
e∈M w(e) is maximized. This is indeed a polynomial time solvable problem, but

the algorithm is highly non-trivial and way beyond the scope of this course. However, it is
easy to design a greedy algorithm that finds a 2-approximation. To be precise we suggest the
following algorithm:

1: Sort the edges so that w(e1) ≥ w(e2) ≥ . . . ≥ w(em)
2: Set M := ∅
3: for i from 1 to m do
4: If M ∪ {ei} is still a matching then update M := M ∪ {ei}

Let us denote OPT := max{w(M) : M ⊆ E is a matching} as the value of the optimum
solution and GREEDY as the value of the solution produced by the greedy algorithm above.
Solve the following:

(a) Show that for any ε > 0 there is an instance where GREEDY ≤ (12 + ε) · OPT.
(b) Suppose that {a1, . . . , ap} ⊆ E are the edges selected by greedy and suppose that

{b1, . . . , bq} ⊆ E are the edges selected by the optimum solution. Moreover suppose those
edges are sorted so that w(a1) ≥ w(a2) ≥ . . . ≥ w(ap) and w(b1) ≥ w(b2) ≥ . . . ≥ w(bq).
For the sake of simplicity, assume that q is even. Show that w(ai) ≥ w(b2i−1) for all
i ∈ {1, . . . , q2}.
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(c) Prove that GREEDY ≥ 1
2 · OPT.

4. (Extra Credit) You are Elizabeth Holmes. Your company Theranos focuses on blood testing.
Suppose you need to analyze N people’s blood for DIVOC-91. For simplicity, suppose the
followings:

• There are exactly d patients with DIVOC-91 where d ≪ N

• You can mix the blood samples of multiple patients and put it in the machine to run the
analysis. If any patient in the mixture has DIVOC-91, it outputs positive (otherwise,
negative).

• You have many such machines, but each run takes 1 day and 1 million dollars.

Show how to find the d patients with DIVOC-91 using these machines and at most O(d logN)
dollars and O(logN) days. Hint: This is a divide and conquer question.

(For a real challenge, design an algorithm that usesO(d logN) dollars and 1 day. You probably
need randomization techniques for the 1 day algorithm.)
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