
CSE 421

Divide and Conquer

Yin Tat Lee

1

Announcements

• From Jan 31 (next mon), all lectures and OH will be in person.

• There will be recording (Panopto or zoom).

• If you feel sick, don’t go to the class.

• Midterm is in person.

• Feb 4 (next Friday)

• Open book and notes (hard copies only)

• Coverage: All topics through divide and conquer

• If you cannot attend the midterm, please contact me ASAP.

• HW4 is out!

HW2 Comments

• What are not considered as a proof?

• You just describe what your algorithm does.

• Bad: We explores edges in alphabetical order, so the output is correct.

• You can always look at lecture notes to see how things are proved.

• Techniques:
• Induction (Key: Come up with a good hypothesis)

• Contradiction (If the output is wrong, what do we contradicts to?)

• I changed the guideline to

• Discuss runtime

• Prove correctness

• Still, the most important thing is to come up with a right

algorithm. You are doing a great job here.

Divide and Conquer Approach

Divide and Conquer

We reduce a problem to several subproblems.

Typically, each sub-problem is

at most a constant fraction of

the size of the original problem

Recursively solve each subproblem

Merge the solutions

Examples:

• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
 le

ve
ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to 𝑛/2

merge

Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:

• Split into n-1 and 1

• Sort each sub problem

• Merge them

Runtime

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:

𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛2)

Reinventing Mergesort

Suppose we've already invented Bubble-Sort, and we know
it takes 𝑛2

Try just one level of divide & conquer:

Bubble-Sort (first n/2 elements)

Bubble-Sort (last n/2 elements)

Merge results

Time: 2 𝑇(𝑛/2) + 𝑛 = 𝑛2/2 + 𝑛 ≪ 𝑛2

Almost twice as fast!

D&C in a

nutshell

Reinventing Mergesort

• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!

• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:

.1𝑛 2 + .9𝑛 2 + 𝑛 = .82𝑛2 + 𝑛

The 18% savings compounds significantly if you carry

recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but

with a bigger constant.

• This is why Quicksort with random splitter is good – badly

unbalanced splits are rare, and not instantly fatal.
In C++, stdlib do quick sort for 𝑛 > 16 and insertion sort for 𝑛 ≤ 16.

See https://www.youtube.com/watch?v=FJJTYQYB1JQ

Why quick sort is better?

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Finding the Root of a Function

Finding the Root of a Function

Given a continuous function f and two points 𝑎 < 𝑏 such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Goal: Find a point 𝑐 where 𝑓 𝑐 is close to 0.

𝑓 has a root in [𝑎, 𝑏] by

intermediate value theorem

Note that roots of 𝑓 may be irrational,

So, we want to approximate

the root with an arbitrary precision!
a b

𝑓(𝑥) = sin 𝑥 −
100

𝑥
+ 𝑥4

A Naive Approach

Suppose we want 𝜖 approximation to a root.

Divide [𝑎, 𝑏] into 𝑛 =
𝑏−𝑎

𝜖
intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂(
𝑏−𝑎

𝜖
)

Can we do faster?

a b

Divide & Conquer (Binary Search)

Bisection (𝑎, 𝑏, 𝜀)

if 𝑏 − 𝑎 < 𝜀 then

return 𝑎;

else

𝑚 ← (𝑎 + 𝑏)/2;

if 𝑓 𝑚 ≤ 0 then

return Bisection(𝑚, 𝑏, 𝜀);

else

return Bisection(𝑎,𝑚, 𝜀);

a bc

Time Analysis

Let 𝑛 =
𝑏−𝑎

𝜖
be the # of intervals and 𝑐 = (𝑎 + 𝑏)/2

Always half of the intervals lie to

the left and half lie to the right of c

So,

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log(
𝑏−𝑎

𝜖
)) a bc

n/2n/2

For 𝑑 dimension ,

“Binary search” can be used to minimize convex functions.

The current best algorithms take 𝑂(𝑑3 log𝑂 1 (𝑑/𝜖)) time.

Fast Exponentiation

Fast Exponentiation

• Power(𝑎, 𝑛)

Input: integer 𝒏 ≥ 𝟎 and number 𝒂

Output: 𝒂𝒏

• Obvious algorithm

𝒏 − 𝟏 multiplications

• Observation:

if 𝒏 is even, then 𝑎𝑛 = 𝑎𝑛/2 ⋅ 𝑎𝑛/2.

17

Divide & Conquer (Repeated Squaring)

Power(𝒂, 𝒏) {
if (𝒏 = 𝟎)

return 𝟏
else if (𝒏 is even)

return Power(𝒂, 𝒏/𝟐)• Power(𝒂, 𝒏/2)
else

return Power(𝒂, (𝒏 − 𝟏)/𝟐)• Power(𝒂, (𝒏 − 𝟏)/2) • 𝒂
}

Time (# of multiplications):
𝑇 𝑛 ≤ 𝑇(𝑛/2ہۂ) + 2 for 𝑛 ≥ 1
𝑇 0 = 0

Solving it, we have
𝑇 𝑛 ≤ 𝑇(𝑛/2ہۂ) + 2 ≤ 𝑇(𝑛/4ہۂ) + 2 + 2

≤ ⋯ ≤ 𝑇 1 + 2 +⋯+ 2 ≤ 2 log2 𝑛.

log𝟐(𝒏) copies

Is there any problem in the program?

𝑘 = Power(𝑎, 𝑛/2); return 𝑘•𝑘;

𝑘 = Power(𝑎, (𝑛 − 1)/2); return 𝑘•𝑘•𝑎;

Quiz

Quiz

Quiz

Master Theorem

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

Works even if it is
𝑛

𝑏
instead of

𝑛

𝑏
.

We also need 𝑎 ≥ 1, 𝑏 > 1 , 𝑘 ≥ 0.

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

Example: For mergesort algorithm we have

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏𝑘 and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

Proving Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

𝑎
𝑛

Problem size

𝑛/𝑏

𝑛/𝑏2

1

probs

𝑎2

𝑎

1

𝑎𝑑

cost

𝑐𝑛𝑘

𝑎 ⋅ 𝑐 𝑛/𝑏 𝑘

𝑎2 ⋅ 𝑐 𝑛/𝑏2 𝑘

𝑎𝑑 ⋅ 𝑐 𝑛/𝑏𝑑
𝑘

𝑇 𝑛 =
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

of problems increases slower

than the decreases of cost.

First term dominates.

of problems increases faster

than the decreases of cost

Last term dominates.

