CSE 421

Divide and Conquer

Yin Tat Lee

Announcements

- From Jan 31 (next mon), all lectures and OH will be in person.
- There will be recording (Panopto or zoom).
- If you feel sick, don't go to the class.
- Midterm is in person.
- Feb 4 (next Friday)
- Open book and notes (hard copies only)
- Coverage: All topics through divide and conquer
- If you cannot attend the midterm, please contact me ASAP.
- HW4 is out!

HW2 Comments

- What are not considered as a proof?
- You just describe what your algorithm does.
- Bad: We explores edges in alphabetical order, so the output is correct.
- You can always look at lecture notes to see how things are proved.
- Techniques:
- Induction (Key: Come up with a good hypothesis)
- Contradiction (If the output is wrong, what do we contradicts to?)
- I changed the guideline to
- Discuss runtime
- Prove correctness
- Still, the most important thing is to come up with a right algorithm. You are doing a great job here.

Divide and Conquer Approach

Divide and Conquer

We reduce a problem to several subproblems.
Typically, each sub-problem is at most a constant fraction of the size of the original problem

Recursively solve each subproblem

Merge the solutions
Examples:

- Mergesort, Binary Search, Strassen's Algorithm,

A Classical Example: Merge Sort

Why Balanced Partitioning?

An alternative "divide \& conquer" algorithm:

- Split into n-1 and 1
- Sort each sub problem
- Merge them

Runtime

$$
T(n)=T(n-1)+T(1)+n
$$

Solution:

$$
\begin{aligned}
T(n) & =n+T(n-1)+T(1) \\
& =n+n-1+T(n-2) \\
& =n+n-1+n-2+T(n-3) \\
& =n+n-1+n-2+\cdots+1=O\left(n^{2}\right)
\end{aligned}
$$

Reinventing Mergesort

Suppose we've already invented Bubble-Sort, and we know it takes n^{2}

Try just one level of divide \& conquer:
Bubble-Sort (first $\mathrm{n} / 2$ elements)
Bubble-Sort (last $\mathrm{n} / 2$ elements)
Merge results
Time: $2 T(n / 2)+n=n^{2} / 2+n \ll n^{2}$
Almost twice as fast!

Reinventing Mergesort

- "the more dividing and conquering, the better"
- Two levels of D\&C would be almost 4 times faster, 3 levels almost 8 , etc., even though overhead is growing.
- Best is usually full recursion down to a small constant size (balancing "work" vs "overhead").
In the limit: you've just rediscovered mergesort!
- Even unbalanced partitioning is good, but less good
- Bubble-sort improved with a $0.1 / 0.9$ split:

$$
(.1 n)^{2}+(.9 n)^{2}+n=.82 n^{2}+n
$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving $O(n \log n)$, but with a bigger constant.

- This is why Quicksort with random splitter is good - badly unbalanced splits are rare, and not instantly fatal.
In C++, stdlib do quick sort for $n>16$ and insertion sort for $n \leq 16$.
See https://www.youtube.com/watch?v=FJJTYQYB1JQ

Finding the Root of a Function

Finding the Root of a Function

Given a continuous function f and two points $a<b$ such that

$$
\begin{aligned}
& f(a) \leq 0 \\
& f(b) \geq 0
\end{aligned}
$$

Goal: Find a point c where $f(c)$ is close to 0 .
f has a root in $[a, b]$ by intermediate value theorem

Note that roots of f may be irrational, So, we want to approximate the root with an arbitrary precision!

$$
f(x)=\sin (x)-\frac{100}{\sqrt{x}}+x^{4}
$$

A Naive Approach

Suppose we want ϵ approximation to a root.

Divide $[a, b]$ into $n=\frac{b-a}{\epsilon}$ intervals. For each interval check

$$
f(x) \leq 0, f(x+\epsilon) \geq 0
$$

This runs in time $O(n)=O\left(\frac{b-a}{\epsilon}\right)$

Can we do faster?

Divide \& Conquer (Binary Search)

Bisection (a, b, ε)
if $(b-a)<\varepsilon$ then
return a;
else

$$
\begin{aligned}
& m \leftarrow(a+b) / 2 \\
& \text { if } f(m) \leq 0 \text { then }
\end{aligned}
$$ return Bisection (m, b, ε); else

return Bisection (a, m, ε);

Time Analysis

Let $n=\frac{b-a}{\epsilon}$ be the \# of intervals and $c=(a+b) / 2$

Always half of the intervals lie to the left and half lie to the right of c

So,

$$
\begin{aligned}
& \quad T(n)=T\left(\frac{n}{2}\right)+O(1) \\
& \text { i.e., } T(n)=O(\log n)=O\left(\log \left(\frac{b-a}{\epsilon}\right)\right)
\end{aligned}
$$

For d dimension ,
"Binary search" can be used to minimize convex functions. The current best algorithms take $O\left(d^{3} \log ^{O(1)}(d / \epsilon)\right)$ time.

Fast Exponentiation

Fast Exponentiation

- Power(a,n)

Input: integer $\boldsymbol{n} \geq \mathbf{0}$ and number \boldsymbol{a}
Output: $\boldsymbol{a}^{\boldsymbol{n}}$

- Obvious algorithm
$n-1$ multiplications
- Observation:
if \boldsymbol{n} is even, then $a^{n}=a^{n / 2} \cdot a^{n / 2}$.

Divide \& Conquer (Repeated Squaring)

```
Power (a,n) { Is there any problem in the program?
    if (n=0)
        return 1
    else if ( }n\mathrm{ is even)
        return Power (a,n/2) \bullet Power (a,n/2) k= Power(a,n/2); return k\bulletk;
    else
        return Power (a,(n-1)/2) - Power (a,(n-1)/2) •a
}
                        k= Power(a,(n-1)/2); return k\bulletk\bulleta;
```

Time (\# of multiplications):

$$
\begin{aligned}
& T(n) \leq T(\lfloor n / 2\rfloor)+2 \text { for } n \geq 1 \\
& T(0)=0
\end{aligned}
$$

Solving it, we have

$$
\begin{gathered}
T(n) \leq T(\lfloor n / 2\rfloor)+2 \leq T(\lfloor n / 4\rfloor)+2+2 \\
\leq \cdots \leq T(1)+\underbrace{2+\cdots+2 \leq}_{\log _{2}(n) \text { copies }} 2 \log _{2} n
\end{gathered}
$$

Quiz

Problem 4 (20 points).

Given an array of positive numbers $a=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$. Give an $O(n \log n)$ time algorithm that find i and j (with $i \leq j$) that maximize the subarray product $\prod_{k=i}^{j} a_{k}$. Prove the correctness and the runtime of the algorithm.

For example, in the array $a=[3,0.2,5,7,0.4,4,0.01]$, the sub-array from $i=3$ to $j=6$ has the product $5 \times 7 \times 0.4 \times 4=56$ and no other sub-array contains elements that product to a value greater than 56 . So, the answer for this input is $i=3, j=6$.

Hints: Divide and Conquer.

Quiz

Algorithm

function $(i, j)=\operatorname{MAXSUB}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$

- If $n=1$
- Output $i=j=1$.
- Else
$-\left(i_{1}, j_{1}\right)=\operatorname{MAXSUB}\left(a_{1}, \cdots, a_{\lfloor n / 2\rfloor}\right)$.
$-\left(i_{2}, j_{2}\right)=\operatorname{MAXSUB}\left(a_{\lfloor n / 2\rfloor+1}, \cdots, a_{n}\right)$.
- Find $i_{3} \leq\lfloor n / 2\rfloor$ that maximize $\prod_{k=i_{3}}^{\lfloor n / 2\rfloor} a_{k}$.
- Find $j_{3}>\lfloor n / 2\rfloor$ that maximize $\prod_{k=\lfloor n / 2\rfloor+1}^{j_{3}} a_{k}$.
- Compare the subarray product for $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ and $\left(i_{3}, j_{3}\right)$ and output the one with the largest subarray product.

Runtime

The runtime satisfies $T(n)=2 T(n / 2)+O(n)$. So, we have $T(n)=O(n \log n)$.

Quiz

Correctness

Induction statement: "The algorithm is correct for input size $\leq n$ "
Base case $n=1$: The algorithm is correct because $i=j=1$ is the only possible output.
Inductive step:
Case 1: $j \leq\lfloor n / 2\rfloor$.
The algorithm finds the solution from the first sub-problem (due to the induction hypothesis).
Case 2: $i>\lfloor n / 2\rfloor$.
The algorithm finds the solution from the second sub-problem (due to the induction hypothesis).
Case 3: $i \leq\lfloor n / 2\rfloor$ and $j>\lfloor n / 2\rfloor$.
Note that $\prod_{k=i}^{j} a_{k}=\prod_{k=i}^{\lfloor n / 2\rfloor} a_{k} \times \prod_{k=\lfloor n / 2\rfloor}^{j} a_{k}$. Since i and j maximize the left hand side, i must be the maximizer of $\prod_{k=i}^{\lfloor n / 2\rfloor} a_{k}$ and j must be the maximizer of $\prod_{k=\lfloor n / 2\rfloor}^{j} a_{k}$.

Therefore, the algorithm correctly finds it in this case.

Master Theorem

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Works even if it is $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.
We also need $a \geq 1, b>1, k \geq 0$.

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Example: For mergesort algorithm we have

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)
$$

So, $k=1, a=b^{k}$ and $T(n)=\Theta(n \log n)$

Proving Master Theorem

Problem size $T(n)=a T(n / b)+c n^{k}$ n

n / b n / b^{2} | 1 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 11 |
| 0 |

1

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right) \quad \#$ of problems increases slower than the decreases of cost. First term dominates.
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
\# of problems increases faster than the decreases of cost

Last term dominates.

