

Divide and Conquer

Yin Tat Lee

Announcements

- From Jan 31 (next mon), all lectures and OH will be in person.
- There will be recording (Panopto or zoom).
- If you feel sick, don't go to the class.
- Midterm is in person.
 - Feb 4 (next Friday)
 - Open book and notes (hard copies only)
 - Coverage: All topics through divide and conquer
- If you cannot attend the midterm, please contact me ASAP.
- HW4 is out!

HW2 Comments

- What are **not** considered as a proof?
 - You just describe what your algorithm does.
 - Bad: We explores edges in alphabetical order, so the output is correct.
 - You can always look at lecture notes to see how things are proved.
 - Techniques:
 - Induction (Key: Come up with a good hypothesis)
 - Contradiction (If the output is wrong, what do we contradicts to?)
- I changed the guideline to
 - Discuss runtime
 - Prove correctness
- Still, the most important thing is to come up with a right algorithm. You are doing a great job here.

Divide and Conquer Approach

Divide and Conquer

We reduce a problem to several subproblems.

Typically, each sub-problem is at most a constant fraction of the size of the original problem

Recursively solve each subproblem Merge the solutions

Examples:

Mergesort, Binary Search, Strassen's Algorithm,

A Classical Example: Merge Sort

Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:

- Split into n-1 and 1
- Sort each sub problem
- Merge them

Runtime

$$T(n) = T(n-1) + T(1) + n$$

Solution:

$$T(n) = n + T(n - 1) + T(1)$$

= $n + n - 1 + T(n - 2)$
= $n + n - 1 + n - 2 + T(n - 3)$
= $n + n - 1 + n - 2 + \dots + 1 = O(n^2)$

Reinventing Mergesort

Suppose we've already invented Bubble-Sort, and we know it takes n^2

Try just one level of divide & conquer:

Bubble-Sort (first n/2 elements)

Bubble-Sort (last n/2 elements)

Merge results

Time: $2T(n/2) + n = n^2/2 + n \ll n^2$

Almost twice as fast!

Reinventing Mergesort

- "the more dividing and conquering, the better"
 - Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing.
 - Best is usually full recursion down to a small constant size (balancing "work" vs "overhead").

In the limit: you've just rediscovered mergesort!

- Even unbalanced partitioning is good, but less good
 - Bubble-sort improved with a 0.1/0.9 split: $(.1n)^2 + (.9n)^2 + n = .82n^2 + n$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving $O(n \log n)$, but with a bigger constant.

This is why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
 In C++, stdlib do quick sort for n > 16 and insertion sort for n ≤ 16.
 See https://www.youtube.com/watch?v=FJJTYQYB1JQ

Finding the Root of a Function

Finding the Root of a Function

Given a continuous function f and two points a < b such that $f(a) \le 0$ $f(b) \ge 0$

Goal: Find a point *c* where f(c) is close to 0.

f has a root in [a, b] by intermediate value theorem

Note that roots of *f* may be irrational, So, we want to approximate the root with an arbitrary precision!

A Naive Approach

Suppose we want ϵ approximation to a root.

Divide
$$[a, b]$$
 into $n = \frac{b-a}{\epsilon}$ intervals. For each interval check $f(x) \le 0, f(x + \epsilon) \ge 0$

This runs in time
$$O(n) = O(\frac{b-a}{\epsilon})$$

Can we do faster?

Divide & Conquer (Binary Search)

Bisection (a, b, ε) if $(b-a) < \varepsilon$ then return *a*; else $m \leftarrow (a+b)/2;$ if $f(m) \leq 0$ then return Bisection(m, b, ε); else return Bisection(a, m, ε);

Time Analysis

Let
$$n = \frac{b-a}{\epsilon}$$
 be the # of intervals and $c = (a+b)/2$

Always half of the intervals lie to the left and half lie to the right of c

So,

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$
i.e., $T(n) = O(\log n) = O(\log(\frac{b-a}{\epsilon}))$ a $n/2$

For d dimension,

n/2

"Binary search" can be used to minimize convex functions. The current best algorithms take $O(d^3 \log^{O(1)}(d/\epsilon))$ time.

Fast Exponentiation

Fast Exponentiation

• Power(a, n)

Input: integer $n \ge 0$ and number a**Output:** a^n

- Obvious algorithm
 n 1 multiplications
- Observation:

if **n** is even, then $a^n = a^{n/2} \cdot a^{n/2}$.

Divide & Conquer (Repeated Squaring)

```
Power (a,n) {

if (n = 0)

return 1

else if (n \text{ is even})

return Power (a,n/2) \bullet Power (a,n/2) k = \text{Power}(a,n/2); return k \bullet k;

else

return Power (a, (n - 1)/2) \bullet Power (a, (n - 1)/2) \bullet a

k = \text{Power}(a, (n - 1)/2); return k \bullet k \bullet a;
```

Time (# of multiplications): $T(n) \le T(\lfloor n/2 \rfloor) + 2$ for $n \ge 1$ T(0) = 0

Solving it, we have $T(n) \leq T(\lfloor n/2 \rfloor) + 2 \leq T(\lfloor n/4 \rfloor) + 2 + 2$ $\leq \cdots \leq T(1) + 2 + \cdots + 2 \leq 2 \log_2 n.$ $\log_2(n) \text{ copies}$

Quiz

Problem 4 (20 points).

Given an array of positive numbers $a = [a_1, a_2, \dots, a_n]$. Give an $O(n \log n)$ time algorithm that find i and j (with $i \leq j$) that maximize the subarray product $\prod_{k=i}^{j} a_k$. Prove the correctness and the runtime of the algorithm.

For example, in the array a = [3, 0.2, 5, 7, 0.4, 4, 0.01], the sub-array from i = 3 to j = 6 has the product $5 \times 7 \times 0.4 \times 4 = 56$ and no other sub-array contains elements that product to a value greater than 56. So, the answer for this input is i = 3, j = 6.

Hints: Divide and Conquer.

Quiz

Algorithm

function $(i, j) = MAXSUB(a_1, a_2, \cdots, a_n)$

• If n = 1

$$-$$
 Output $i = j = 1$.

- Else
 - $$\begin{split} &-(i_1, j_1) = \texttt{MAXSUB}(a_1, \cdots, a_{\lfloor n/2 \rfloor}). \\ &-(i_2, j_2) = \texttt{MAXSUB}(a_{\lfloor n/2 \rfloor + 1}, \cdots, a_n). \end{split}$$
 - Find $i_3 \leq \lfloor n/2 \rfloor$ that maximize $\prod_{k=i_3}^{\lfloor n/2 \rfloor} a_k$.
 - Find $j_3 > \lfloor n/2 \rfloor$ that maximize $\prod_{k=\lfloor n/2 \rfloor+1}^{j_3} a_k$.
 - Compare the subarray product for (i1, j1), (i2, j2) and (i3, j3) and output the one with the largest subarray product.

Runtime

The runtime satisfies T(n) = 2T(n/2) + O(n). So, we have $T(n) = O(n \log n)$.

Quiz

Correctness

Induction statement: "The algorithm is correct for input size $\leq n$ "

Base case n = 1: The algorithm is correct because i = j = 1 is the only possible output. Inductive step:

Case 1: $j \leq \lfloor n/2 \rfloor$.

The algorithm finds the solution from the first sub-problem (due to the induction hypothesis). Case 2: $i > \lfloor n/2 \rfloor$.

The algorithm finds the solution from the second sub-problem (due to the induction hypothesis). Case 3: $i \leq \lfloor n/2 \rfloor$ and $j > \lfloor n/2 \rfloor$.

Note that $\prod_{k=i}^{j} a_k = \prod_{k=i}^{\lfloor n/2 \rfloor} a_k \times \prod_{k=\lfloor n/2 \rfloor}^{j} a_k$. Since *i* and *j* maximize the left hand side, *i* must

be the maximizer of $\prod_{k=i}^{\lfloor n/2 \rfloor} a_k$ and j must be the maximizer of $\prod_{k=\lfloor n/2 \rfloor}^j a_k$.

Therefore, the algorithm correctly finds it in this case.

Suppose $T(n) = a T\left(\frac{n}{b}\right) + cn^k$ for all n > b. Then,

• If
$$a < b^k$$
 then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

• If
$$a > b^k$$
 then $T(n) = \Theta(n^{\log_b a})$
Works even if it is $\left[\frac{n}{b}\right]$ instead of $\frac{n}{b}$.
We also need $a \ge 1, b > 1, k \ge 0$.

Suppose $T(n) = a T\left(\frac{n}{b}\right) + cn^k$ for all n > b. Then,

• If
$$a < b^k$$
 then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

• If
$$a > b^k$$
 then $T(n) = \Theta(n^{\log_b a})$
Example: For mergesort algorithm we have
 $T(n) = 2T\left(\frac{n}{2}\right) + O(n).$

So, $k = 1, a = b^k$ and $T(n) = \Theta(n \log n)$

Proving Master Theorem

$$T(n) = \sum_{i=0}^{a = \log_b n} a^i c \left(\frac{n}{b^i}\right)^k$$

Suppose
$$T(n) = a T\left(\frac{n}{b}\right) + cn^k$$
 for all $n > b$. Then,

• If
$$a < b^k$$
 then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

of problems increases slower than the decreases of cost. First term dominates.

• If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$

of problems increases faster than the decreases of cost Last term dominates.