

Divide and Conquer

Yin Tat Lee

Quiz

Problem 4 (20 points).

Given an array of positive numbers $a = [a_1, a_2, \dots, a_n]$. Give an $O(n \log n)$ time algorithm that find i and j (with $i \leq j$) that maximize the subarray product $\prod_{k=i}^{j} a_k$. Prove the correctness and the runtime of the algorithm.

For example, in the array a = [3, 0.2, 5, 7, 0.4, 4, 0.01], the sub-array from i = 3 to j = 6 has the product $5 \times 7 \times 0.4 \times 4 = 56$ and no other sub-array contains elements that product to a value greater than 56. So, the answer for this input is i = 3, j = 6.

Hints: Divide and Conquer.

Master Theorem

Proving Master Theorem

$$T(n) = \sum_{i=0}^{a = \log_b n} a^i c \left(\frac{n}{b^i}\right)^k$$

Master Theorem

Suppose
$$T(n) = a T\left(\frac{n}{b}\right) + cn^k$$
 for all $n > b$. Then,

• If
$$a < b^k$$
 then $T(n) = \Theta(n^k)$

• If
$$a = b^k$$
 then $T(n) = \Theta(n^k \log n)$

• If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$

of problems increases slower than the decreases of cost. First term dominates.

of problems increases faster than the decreases of cost Last term dominates.

A Useful Identity

Theorem: $1 + x + x^2 + \dots + x^d = \frac{x^{d+1}-1}{x-1}$ **Proof:** Let $S = 1 + x + x^2 + \dots + x^d$ Then, $xS = x + x^2 + \dots + x^{d+1}$ So, $xS - S = x^{d+1} - 1$ i.e., $S(x-1) = x^{d+1} - 1$ Therefore, $S = \frac{x^{a+1}-1}{x-1}$ O_x means the hidden constant depends on x**Corollary**: y: $1 + x + x^{2} + \dots + x^{d} = \begin{cases} O_{x}(1) & \text{if } x < 1 \\ d + 1 & \text{if } x = 1 \\ O_{x}(x^{d+1}) & \text{if } x > 1 \end{cases}$

Solve:
$$T(n) = aT\left(\frac{n}{b}\right) + cn^k$$

Corollary:

$$1 + x + x^{2} + \dots + x^{d} = \begin{cases} \Theta_{x}(1) & \text{if } x < 1\\ \Theta(d) & \text{if } x = 1\\ \Theta_{x}(x^{d+1}) & \text{if } x > 1 \end{cases}$$

Going back, we have

$$T(n) = \sum_{i=0}^{d=\log_b n} a^i c \left(\frac{n}{b^i}\right)^k = c n^k \sum_{i=0}^{d=\log_b n} \left(\frac{a}{b^k}\right)^i$$

Hence, we have

con

$$T(n) = \Theta(n^k) \begin{cases} 1 & \text{if } a < b^k \\ \log_b n & \text{if } a = b^k \\ \left(\frac{a}{b^k}\right)^{\log_b n} & \text{if } a > b^k \end{cases}$$

stant depends on *a*, *b*, *c*

Solve:
$$T(n) = aT\left(\frac{n}{b}\right) + cn^{k}$$

 $T(n) = \Theta(n^{k}) \begin{cases} 1 & \text{if } a < b^{k} \\ \log_{b} n & \text{if } a = b^{k} \\ \left(\frac{a}{b^{k}}\right)^{\log_{b} n} & \text{if } a > b^{k} \end{cases}$
For $a < b^{k}$, we simply have $T(n) = \Theta(n^{k})$.
For $a = b^{k}$, we have $T(n) = \Theta(n^{k} \log_{b} n) = \Theta(n^{k} \log n)$.
For $a > b^{k}$, we have $T(n) = \Theta\left(n^{k}\left(\frac{a}{b^{k}}\right)^{\log_{b} n}\right) = \Theta(n^{\log_{b} a})$.
For $a > b^{k}$, we have $T(n) = \Theta\left(n^{k}\left(\frac{a}{b^{k}}\right)^{\log_{b} n}\right) = \Theta(n^{\log_{b} a})$.

Finding the Closest Pair of Points

Closest Pair of Points (1-dimension)

Given *n* points on the real line, find the closest pair, e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time $O(n \log n)$ to sort, if needed, Plus O(n) to scan adjacent pairs

Key point: do *not* need to calculate distances between all pairs: exploit geometry + ordering

Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points in $\Theta(n^2)$ time.

Assumption: No two points have same *x* coordinate.

Closest Pair of Points (2-dimensions)

Divide & Conquer

Divide: draw vertical line L with $\approx n/2$ points on each side. Conquer: find closest pair on each side, recursively. Combine to find closest pair overall \leftarrow How ? Return best solutions

Why the strip problem is easier?

Key Observation

Suppose δ is the minimum distance of all pairs in left/right of *L*. $\delta = \min(12,21) = 12.$

Key Observation: suffices to consider points within δ of line *L*.

Almost the one-D problem again: Sort points in 2δ -strip by their y coordinate.

Almost 1D Problem

Partition each side of *L* into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box. **Proof**: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ -width-strip.

Claim: If |i - j| > 11, then the distance between s_i and s_j is $> \delta$.

Proof: only 11 boxes within δ of $y(s_i)$.

Where is the bottleneck? Closest Pair (2 dimension)

```
Closest-Pair (p_1, p_2, \cdots, p_n) {
if (n \leq 2) return |p_1 - p_2|
```

Compute separation line L such that half the points are on one side and half on the other side.

 δ_1 = Closest-Pair(left half) δ_2 = Closest-Pair(right half) δ = min(δ_1, δ_2)

Delete all points further than δ from separation line L

Sort remaining points p[1]...p[m] by y-coordinate.

```
for i = 1, 2, \dots, m
for k = 1, 2, \dots, 11
if i + k \le m
\delta = \min(\delta, \text{ distance}(p[i], p[i+k]));
```

return δ .

}

Closest Pair Analysis

Let D(n) be the number of pairwise distance calculations in the Closest-Pair Algorithm

$$D(n) \leq \begin{cases} 1 & \text{if } n = 1\\ 2D\left(\frac{n}{2}\right) + 11n & \text{o.w.} \end{cases} \Rightarrow D(n) = O(n\log n)$$

BUT, that's only the number of *distance calculations* What if we counted running time?

$$T(n) \leq \begin{cases} 1 & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + O(n\log n) & \text{o.w.} \end{cases} \Rightarrow T(n) = O(n\log^2 n)$$

Closest Pair (2 dimension) Improved

```
Closest-Pair (p_1, p_2, \cdots, p_n) {
if (n \leq 2) return |p_1 - p_2|
```

Compute separation line L such that half the points are on one side and half on the other side.

 $\begin{array}{ll} (\delta_1,p_1) &= \mbox{Closest-Pair(left half)} \\ (\delta_2,p_2) &= \mbox{Closest-Pair(right half)} \\ \delta &= \mbox{min}(\delta_1,\delta_2) \\ p_{sorted} &= \mbox{merge}(p_1,p_2) & (\mbox{merge sort it by y-coordinate}) \end{array}$

Let q be points (ordered as p_{sorted}) that is δ from line L.

```
for i = 1, 2, \dots, m
for k = 1, 2, \dots, 11
if i + k \le m
\delta = \min(\delta, distance(q[i], q[i+k]));
```

return δ and p_{sorted} .

}

 $T(n) \leq \begin{cases} 1 & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + O(n) & \text{o.w.} \end{cases}$ $\Rightarrow T(n) = O(n \log n)$

How to solve closest pair in 3 dimension?

Closest-Pair (p_1, p_2, \cdots, p_n) { if $(n \leq 2)$ return $|p_1 - p_2|$

}

Compute separation line L such that half the points are on one side and half on the other side.

$$\delta_1$$
 = Closest-Pair(left half)
 δ_2 = Closest-Pair(right half)
 δ = min(δ_1, δ_2)

Delete all points further than δ from separation line L

Put points into
$$\frac{\delta}{2} \times \frac{\delta}{2} \times \frac{\delta}{2}$$
 cubes (via hash table)

for
$$i = 1, 2, \dots, m$$

Let (a,b,c) be the cube for $p[i]$.
for $x,y,z = -3, -2, 1, 0, 1, 2, 3$
check the cube $(a+x,b+y,c+z)$
if there is a point q in the cube,
 $\delta = \min(\delta, \text{ distance}(p[i], q));$
return δ .
In d dimension, the runtime is
 $T(n) = 2^{O(d)}n \log n$

Median

Selecting k-th smallest

Problem: Given numbers $x_1, ..., x_n$ and an integer $1 \le k \le n$ output the *k*-th smallest number $Sel(\{x_1, ..., x_n\}, k)$

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the *k*-th smallest in the array.

Can we do better?

```
Yes, in time O(n) if k = 1 or k = 2.
```

Can we do O(n) for all possible values of k?

An Idea

Choose a number w from x_1, \ldots, x_n

Define

•
$$S_{<}(w) = \{x_i : x_i < w\}$$

•
$$S_{=}(w) = \{x_i : x_i = w\}$$

•
$$S_{>}(w) = \{x_i : x_i > w\}$$

Solve the problem recursively as follows:

- If $k \leq |S_{\leq}(w)|$, output $Sel(S_{\leq}(w), k)$
- Else if $k \leq |S_{\leq}(w)| + |S_{=}(w)|$, output w
- Else output $Sel(S_{>}(w), k |S_{<}(w)| |S_{=}(w)|)$

Ideally want $|S_{\leq}(w)|, |S_{\geq}(w)| \le n/2$. In this case ALG runs in $O(n) + O\left(\frac{n}{2}\right) + O\left(\frac{n}{4}\right) + \dots + O(1) = O(n)$.

How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort. Then, $\mathbb{E}[|S_{<}(w)|] = \mathbb{E}[|S_{>}(w)|] = n/2$. Algorithm runs in O(n) in expectation. Can we get O(n) running time deterministically?

- Partition numbers into sets of size 3.
- Sort each set (takes O(n))
- w = Sel(midpoints, n/6)

Assume all numbers are distinct for simplicity.

How to lower bound $|S_{<}(w)|, |S_{>}(w)|$?

> w

< **w**

•
$$|S_{<}(w)| \ge 2\left(\frac{n}{6}\right) = \frac{n}{3}$$

• $|S_{>}(w)| \ge 2\left(\frac{n}{6}\right) = \frac{n}{3}$.
 $\frac{n}{3} \le |S_{<}(w)|, |S_{>}(w)| \le \frac{2n}{3}$

So, what is the running time?

Assume all numbers are distinct for simplicity.

Asymptotic Running Time?

If $k \leq |S_{\leq}(w)|$, output $Sel(S_{\leq}(w), k)$ ٠

•

- Else if $k \leq |S_{\leq}(w)| + |S_{=}(w)|$, output w ۲
- $O(n \log n)$ again? So, what is the point? Else output $Sel(S_{>}(w), k - |S_{<}(w)| - |S_{=}(w)|)$

Where
$$\frac{n}{3} \le |S_{<}(w)|, |S_{>}(w)| \le \frac{2n}{3}$$

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n \log n)$$

An Improved Idea

Partition into n/5 sets. Sort each set and set w = Sel(midpoints, n/10)

• $|S_{<}(w)| \ge 3\left(\frac{n}{10}\right) = \frac{3n}{10}$ • $|S_{>}(w)| \ge 3\left(\frac{n}{10}\right) = \frac{3n}{10}$ $T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n) \Rightarrow T(n) = O(n)$

Can we do it even better?

Goal: Finding median.

Fix ϵ . Randomly select T/ϵ^2 elements. Output the median of these T/ϵ^2 elements.

One can prove that it will gives an element with rank $(1/2 - \epsilon)n$ and $(1/2 + \epsilon)n$ with probability at least $1 - \exp(-T)$.

Think $\epsilon = 0.1$ and T = 30. Then, we have almost median with high prob in O(1) time.

Integer Multiplication

Integer Arithmetic

Divide and Conquer

Let *x*, *y* be two *n*-bit integers Write $x = 2^{n/2}x_1 + x_0$ and $y = 2^{n/2}y_1 + y_0$ where x_0, x_1, y_0, y_1 are all *n*/2-bit integers.

$$\begin{aligned} x &= 2^{n/2} \cdot x_1 + x_0 \\ y &= 2^{n/2} \cdot y_1 + y_0 \\ xy &= (2^{n/2} \cdot x_1 + x_0) (2^{n/2} \cdot y_1 + y_0) \\ &= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0 \end{aligned}$$

Therefore,

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

We only need 3 values $x_1y_1, x_0y_0, x_1y_0 + x_0y_1$ Can we find all 3 by only 3 multiplication?

So,

 $T(n) = \Theta(n^2).$

Key Trick: 4 multiplies at the price of 3

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$\alpha = x_1 + x_0$$

$$\beta = y_1 + y_0$$

$$\alpha\beta = (x_1 + x_0)(y_1 + y_0)$$

$$= x_1 y_1 + (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$(x_1 y_0 + x_0 y_1) = \alpha\beta - x_1 y_1 - x_0 y_0$$

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585...})$ bit operations.

To multiply two n-bit integers:

Add two n/2 bit integers.

Multiply three n/2-bit integers.

Add, subtract, and shift n/2-bit integers to obtain result.

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O\left(n^{\log_2 3}\right) = O(n^{1.585...})$$

Integer Multiplication (Summary)

 Exercise: generalize Karatsuba to do 5 size n/3 subproblems

This gives $\Theta(n^{1.46...})$ time algorithm

Date	Authors	Time complexity
<3000 BC	Unknown	$O(n^2)$
1962	Karatsuba	$O(n^{\log 3/\log 2})$
1963	Toom	$O(n 2^{5\sqrt{\log n/\log 2}})$
1966	Schönhage	$O(n 2^{\sqrt{2\log n / \log 2}} (\log n)^{3/2})$
1969	Knuth	$O(n 2^{\sqrt{2\log n / \log 2}} \log n)$
1971	Schönhage–Strassen	$O(n\log n\log\log n)$
2007	Fürer	$O(n\log n 2^{O(\log^* n)})$
2014	Harvey-Hoeven-Lecerf	$O(n\log n8^{\log^* n})$
2019	Harvey-Hoeven	$O(n\log n)$

Integer Multiplication (Summary)

Demonstration of multiplying $1234 \times 5678 = 7006652$ using fast Fourier transforms (FFTs). Number-theoretic transforms in the integers modulo 337 are used, selecting 85 as an 8th root of unity. Base 10 is used in place of base 2^{W} for illustrative purposes.

Matrix Multiplication

Let A be an $n \times m$ matrix, B be an $m \times p$ matrix.

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \ a_{21} & a_{22} & \cdots & a_{2m} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \quad \mathbf{B} = egin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \ b_{21} & b_{22} & \cdots & b_{2p} \ dots & dots$$

Then, C = AB is an $n \times p$ matrix

$$\mathbf{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \ c_{21} & c_{22} & \cdots & c_{2p} \ dots & dots & \ddots & dots \ c_{n1} & c_{n2} & \cdots & c_{np} \end{pmatrix}$$

such that

$$c_{ij}=a_{i1}b_{1j}+\dots+a_{im}b_{mj}=\sum_{k=1}^ma_{ik}b_{kj},$$

Question: Why matrix multiplication is defined in such way?

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

 $= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \circ & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \circ & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \circ & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \circ & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44} \end{bmatrix}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \bullet \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\ a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{31} + a_{44}b_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\ a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{34}b_{42} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\ a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} \\ a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} \end{bmatrix}$$

Simple Divide and Conquer

Strassen's Divide and Conquer Algorithm

Strassen's algorithm

Multiply 2×2 matrices using 7 instead of 8 multiplications (and 18 additions)

 $T(n) = 7T\left(\frac{n}{2}\right) + 18n$

Hence, we have $T(n) = O(n^{\log_2 7})$.

Strassen's Divide and Conquer Algorithm

Naive

$$\begin{aligned} \mathbf{C}_{1,1} &= \mathbf{A}_{1,1}\mathbf{B}_{1,1} + \mathbf{A}_{1,2}\mathbf{B}_{2,1} \\ \mathbf{C}_{1,2} &= \mathbf{A}_{1,1}\mathbf{B}_{1,2} + \mathbf{A}_{1,2}\mathbf{B}_{2,2} \\ \mathbf{C}_{2,1} &= \mathbf{A}_{2,1}\mathbf{B}_{1,1} + \mathbf{A}_{2,2}\mathbf{B}_{2,1} \\ \mathbf{C}_{2,2} &= \mathbf{A}_{2,1}\mathbf{B}_{1,2} + \mathbf{A}_{2,2}\mathbf{B}_{2,2} \end{aligned}$$

Strassen

$$\begin{split} \mathbf{M}_1 &:= (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) \\ \mathbf{M}_2 &:= (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} \\ \mathbf{M}_3 &:= \mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) \\ \mathbf{M}_4 &:= \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) \\ \mathbf{M}_5 &:= (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2} \\ \mathbf{M}_6 &:= (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}) \\ \mathbf{M}_7 &:= (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}) \end{split}$$

$$egin{aligned} {f C}_{1,1} &= {f M}_1 + {f M}_4 - {f M}_5 + {f M}_7 \ {f C}_{1,2} &= {f M}_3 + {f M}_5 \ {f C}_{2,1} &= {f M}_2 + {f M}_4 \ {f C}_{2,2} &= {f M}_1 - {f M}_2 + {f M}_3 + {f M}_6 \end{aligned}$$

How did Strassen come up with his matrix multiplication method? Stackexchange: I've been told no-one really knows, anything would be mainly speculation.