
CSE 421

Divide and Conquer

Yin Tat Lee

1

Quiz

Master Theorem

Proving Master Theorem

𝑇 𝑛 = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘

𝑎
𝑛

Problem size

𝑛/𝑏

𝑛/𝑏2

1

probs

𝑎2

𝑎

1

𝑎𝑑

cost

𝑐𝑛𝑘

𝑎 ⋅ 𝑐 𝑛/𝑏 𝑘

𝑎2 ⋅ 𝑐 𝑛/𝑏2 𝑘

𝑎𝑑 ⋅ 𝑐 𝑛/𝑏𝑑
𝑘

𝑇 𝑛 =
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

Master Theorem

Suppose 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘 for all 𝑛 > 𝑏. Then,

• If 𝑎 < 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘

• If 𝑎 = 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛𝑘log 𝑛

• If 𝑎 > 𝑏𝑘 then 𝑇 𝑛 = Θ 𝑛log𝑏𝑎

of problems increases slower

than the decreases of cost.

First term dominates.

of problems increases faster

than the decreases of cost

Last term dominates.

A Useful Identity

Theorem: 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑑 =
𝑥𝑑+1−1

𝑥−1

Proof: Let 𝑆 = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑑

Then, 𝑥𝑆 = 𝑥 + 𝑥2 +⋯+ 𝑥𝑑+1

So, 𝑥𝑆 − 𝑆 = 𝑥𝑑+1 − 1

i.e., 𝑆 𝑥 − 1 = 𝑥𝑑+1 − 1

Therefore, 𝑆 =
𝑥𝑑+1−1

𝑥−1

Corollary:

1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑑 = ൞

𝑂𝑥 1 if 𝑥 < 1
𝑑 + 1 if 𝑥 = 1
𝑂𝑥 𝑥𝑑+1 if 𝑥 > 1

𝑂𝑥 means the hidden

constant depends on 𝑥

Solve: 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘

Corollary:

1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑑 = ൞

Θ𝑥 1 if 𝑥 < 1

Θ 𝑑 if 𝑥 = 1

Θ𝑥 𝑥𝑑+1 if 𝑥 > 1

Going back, we have

𝑇 𝑛 =
𝑖=0

𝑑=log𝑏 𝑛

𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑘

= 𝑐𝑛𝑘
𝑖=0

𝑑=log𝑏 𝑛 𝑎

𝑏𝑘

𝑖

Hence, we have

𝑇 𝑛 = Θ 𝑛𝑘

1 if 𝑎 < 𝑏𝑘

log𝑏 𝑛 if 𝑎 = 𝑏𝑘

𝑎

𝑏𝑘

log𝑏 𝑛

if 𝑎 > 𝑏𝑘

constant depends on 𝑎, 𝑏, 𝑐

Solve: 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑐𝑛𝑘

𝑇 𝑛 = Θ 𝑛𝑘

1 if 𝑎 < 𝑏𝑘

log𝑏 𝑛 if 𝑎 = 𝑏𝑘

𝑎

𝑏𝑘

log𝑏 𝑛

if 𝑎 > 𝑏𝑘

For 𝑎 < 𝑏𝑘, we simply have 𝑇 𝑛 = Θ 𝑛𝑘 .

For 𝑎 = 𝑏𝑘, we have 𝑇 𝑛 = Θ 𝑛𝑘 log𝑏 𝑛 = Θ(𝑛𝑘 log 𝑛).

For 𝑎 > 𝑏𝑘, we have 𝑇 𝑛 = Θ 𝑛𝑘
𝑎

𝑏𝑘

log𝑏 𝑛
= Θ(𝑛log𝑏 𝑎).

𝑎log𝑏 𝑛

= (𝑏log𝑏 𝑎)log𝑏 𝑛

= (𝑏log𝑏 𝑛)log𝑏 𝑎

= 𝑛log𝑏 𝑎

𝑏𝑘 log𝑏 𝑛

= 𝑏log𝑏 𝑛
𝑘

= 𝑛𝑘

Finding the Closest Pair of Points

Closest Pair of Points (1-dimension)

Given 𝑛 points on the real line, find the closest pair,

e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1

find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time 𝑂(𝑛 log 𝑛) to sort, if needed, Plus 𝑂(𝑛) to scan adjacent pairs

Key point: do not need to calculate distances between all pairs:
exploit geometry + ordering

1 2 4 4.8 7 8.2 11 11.5 13 16 19

Closest Pair of Points (2-dimensions)

Given 𝑛 points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points in Θ(𝑛2) time.

Assumption: No two points have same 𝑥 coordinate.

Closest Pair of Points (2-dimensions)

No single direction along which one

can sort points to guarantee success!

Divide & Conquer

Divide: draw vertical line 𝐿 with ≈ 𝑛/2 points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

12

21
8

L

How ?

Key Observation

Suppose 𝛿 is the minimum distance of all pairs in left/right of 𝐿.

𝛿 = min 12,21 = 12.

Key Observation: suffices to consider points within 𝛿 of line 𝐿.

Almost the one-D problem again: Sort points in 2𝛿-strip by their 𝑦
coordinate.

12

21

L

=12

7

1

2

3

4
5

6

Why the strip problem is easier?

Almost 1D Problem

Partition each side of 𝐿 into
𝛿

2
×

𝛿

2
squares

Claim: No two points lie in the same
𝛿

2
×

𝛿

2
box.

Proof: Such points would be within

𝛿

2

2
+

𝛿

2

2
= 𝛿

1

2
≈ 0.7𝛿 < 𝛿

Let 𝑠𝑖 have the 𝑖𝑡ℎ smallest 𝑦-coordinate

among points in the 2𝛿-width-strip.

Claim: If 𝑖 − 𝑗 > 11, then the distance

between 𝑠𝑖 and 𝑠𝑗 is > 𝛿.

Proof: only 11 boxes within 𝛿 of 𝑦(𝑠𝑖).

29

30

31

28

26

25

½

½

49

i

j

27

29

Closest Pair (2 dimension)
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

if(𝒏 ≤ 𝟐) return |𝒑𝟏 − 𝒑𝟐|

Compute separation line 𝑳 such that half the points

are on one side and half on the other side.

𝜹𝟏 = Closest-Pair(left half)

𝜹𝟐 = Closest-Pair(right half)

𝜹 = min(𝜹𝟏, 𝜹𝟐)

Delete all points further than from separation line L

Sort remaining points p[1]…p[m] by y-coordinate.

for 𝒊 = 𝟏, 𝟐,⋯ ,𝒎
for k = 𝟏, 𝟐,⋯ , 𝟏𝟏
if 𝒊 + 𝒌 ≤ 𝒎

 = min(, distance(p[i], p[i+k]));

return .

}

Where is the bottleneck?

Closest Pair Analysis

Let 𝐷(𝑛) be the number of pairwise distance calculations in

the Closest-Pair Algorithm

𝐷 𝑛 ≤ ቐ
1 if 𝑛 = 1

2𝐷
𝑛

2
+ 11 𝑛 o.w.

⇒ 𝐷 𝑛 = O(𝑛log 𝑛)

BUT, that’s only the number of distance calculations

What if we counted running time?

𝑇 𝑛 ≤ ቐ
1 if 𝑛 = 1

2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛) o.w.

⇒ 𝑇 𝑛 = O(𝑛log2 𝑛)

Closest Pair (2 dimension) Improved
Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {

if(𝒏 ≤ 𝟐) return |𝒑𝟏 − 𝒑𝟐|

Compute separation line 𝑳 such that half the points

are on one side and half on the other side.

(𝜹𝟏, 𝒑𝟏) = Closest-Pair(left half)
(𝜹𝟐, 𝒑𝟐) = Closest-Pair(right half)

𝜹 = min(𝜹𝟏, 𝜹𝟐)
𝒑𝒔𝒐𝒓𝒕𝒆𝒅 = merge(𝒑𝟏, 𝒑𝟐) (merge sort it by y-coordinate)

Let 𝒒 be points (ordered as 𝒑𝒔𝒐𝒓𝒕𝒆𝒅) that is 𝜹 from line L.

for 𝒊 = 𝟏, 𝟐,⋯ ,𝒎
for k = 𝟏, 𝟐,⋯ , 𝟏𝟏
if 𝒊 + 𝒌 ≤ 𝒎

 = min(, distance(q[i], q[i+k]));

return and 𝒑𝒔𝒐𝒓𝒕𝒆𝒅.
} 𝑇 𝑛 ≤ ቐ

1 if 𝑛 = 1

2𝑇
𝑛

2
+ 𝑂 𝑛 o.w.

⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quiz

How to solve closest pair in 3 dimension?

Closest-Pair(𝒑𝟏, 𝒑𝟐, ⋯ , 𝒑𝒏) {
if(𝒏 ≤ 𝟐) return |𝒑𝟏 − 𝒑𝟐|

Compute separation line 𝑳 such that half the points

are on one side and half on the other side.

𝜹𝟏 = Closest-Pair(left half)

𝜹𝟐 = Closest-Pair(right half)

𝜹 = min(𝜹𝟏, 𝜹𝟐)

Delete all points further than from separation line L

Put points into
𝜹

𝟐
×

𝜹

𝟐
×

𝜹

𝟐
cubes (via hash table)

for 𝒊 = 𝟏, 𝟐,⋯ ,𝒎
Let (a,b,c) be the cube for p[i].

for x,y,z = -3,-2,1,0,1,2,3

check the cube (a+x,b+y,c+z)

if there is a point q in the cube,

 = min(, distance(p[i], q));

return .

}

In 𝑑 dimension, the runtime is

𝑇 𝑛 = 2𝑂(𝑑)𝑛 log 𝑛

Median

Selecting k-th smallest

Problem: Given numbers 𝑥1, … , 𝑥𝑛 and an integer 1 ≤ 𝑘 ≤ 𝑛
output the 𝑘-th smallest number

Sel(𝑥1, … , 𝑥𝑛 , 𝑘)

A simple algorithm: Sort the numbers in time 𝑂(𝑛 log 𝑛) then
return the 𝑘-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?

An Idea

Choose a number 𝑤 from 𝑥1, … , 𝑥𝑛

Define

• 𝑆< 𝑤 = 𝑥𝑖: 𝑥𝑖 < 𝑤

• 𝑆= 𝑤 = 𝑥𝑖: 𝑥𝑖 = 𝑤

• 𝑆> 𝑤 = 𝑥𝑖: 𝑥𝑖 > 𝑤

Solve the problem recursively as follows:

• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Ideally want 𝑆< 𝑤 , |𝑆>(𝑤)| ≤ 𝑛/2. In this case ALG runs in

𝑂 𝑛 + 𝑂
𝑛

2
+ 𝑂

𝑛

4
+⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in

linear time

How to choose w?

Suppose we choose w uniformly at random

similar to the pivot in quicksort.

Then, 𝔼 𝑆< 𝑤 = 𝔼 𝑆> 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in expectation.

Can we get 𝑂(𝑛) running time deterministically?

• Partition numbers into sets of size 3.

• Sort each set (takes O(n))

• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤𝑤

• 𝑆< 𝑤 ≥ 2
𝑛

6
=

𝑛

3

• 𝑆> 𝑤 ≥ 2
𝑛

6
=

𝑛

3
.

So, what is the running time?

How to lower bound 𝑆< 𝑤 , |𝑆> 𝑤 |?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

w
< <<<< < < < < <

< 𝒘

> 𝒘

𝑛

3
≤ |𝑆< 𝑤 |, 𝑆> 𝑤 ≤

2𝑛

3

Assume all numbers are distinct for simplicity.

• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Where
𝑛

3
≤ 𝑆< 𝑤 , 𝑆> 𝑤 ≤

2𝑛

3

𝑇 𝑛 = 𝑇
𝑛

3
+ 𝑇

2𝑛

3
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Asymptotic Running Time?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

𝑤
< <<<< < < < < <

𝑂(𝑛 log 𝑛) again?

So, what is the point?

Assume all numbers are distinct for simplicity.

Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆< 𝑤 ≥ 3
𝑛

10
=

3𝑛

10

• 𝑆> 𝑤 ≥ 3
𝑛

10
=

3𝑛

10

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea

< <<<< < < < < <

< 𝒘

> 𝒘

3𝑛

10
≤ |𝑆< 𝑤 |, 𝑆> 𝑤 ≤

7𝑛

10

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

Can we do it even better?

Goal: Finding median.

Fix 𝜖.

Randomly select 𝑇/𝜖2 elements.

Output the median of these 𝑇/𝜖2 elements.

One can prove that it will gives an element with rank

1/2 − 𝜖 𝑛 and 1/2 + 𝜖 𝑛

with probability at least 1 − exp(−𝑇).

Think 𝜖 = 0.1 and 𝑇 = 30.

Then, we have almost median with high prob in 𝑂(1) time.

Integer Multiplication

Integer Arithmetic

Add: Given two 𝑛-bit integers

𝑎 and 𝑏, compute 𝑎 + 𝑏.

Multiply: Given two 𝑛-bit

integers 𝑎 and 𝑏, compute 𝑎 × 𝑏.

The “grade school” method:

35

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

100000000001011

1

0

1

1

1

1

1

0

*

Multiply

00000000

𝑂(𝑛) bit operations.

𝑂(𝑛2) bit operations.

Divide and Conquer

Let 𝑥, 𝑦 be two 𝑛-bit integers

Write 𝑥 = 2𝑛/2𝑥1 + 𝑥0 and 𝑦 = 2𝑛/2𝑦1 + 𝑦0
where 𝑥0, 𝑥1, 𝑦0, 𝑦1 are all 𝑛/2-bit integers.

Therefore,

𝑇 𝑛 = 4𝑇
𝑛

2
+ Θ(𝑛)

So,

𝑇 𝑛 = Θ 𝑛2 .

𝑥 = 2𝑛/2 ⋅ 𝑥1 + 𝑥0
𝑦 = 2𝑛/2 ⋅ 𝑦1 + 𝑦0
𝑥𝑦 = 2𝑛/2 ⋅ 𝑥1 +𝑥0 2𝑛/2 ⋅ 𝑦1 + 𝑦0

= 2𝑛 ⋅ 𝑥1𝑦1 + 2 Τ𝑛 2 ⋅ 𝑥1𝑦0 + 𝑥0𝑦1 + 𝑥0𝑦0

We only need 3 values

𝑥1𝑦1, 𝑥0𝑦0, 𝑥1𝑦0 + 𝑥0𝑦1
Can we find all 3 by only

3 multiplication?

Key Trick: 4 multiplies at the price of 3

𝑥 = 2𝑛/2 ⋅ 𝑥1 + 𝑥0
𝑦 = 2𝑛/2 ⋅ 𝑦1 + 𝑦0
𝑥𝑦 = 2𝑛/2 ⋅ 𝑥1 +𝑥0 2𝑛/2 ⋅ 𝑦1 + 𝑦0

= 2𝑛 ⋅ 𝑥1𝑦1 + 2 Τ𝑛 2 ⋅ 𝑥1𝑦0 + 𝑥0𝑦1 + 𝑥0𝑦0

𝛼 = 𝑥1 + 𝑥0
𝛽 = 𝑦1 + 𝑦0
𝛼𝛽 = 𝑥1 + 𝑥0 𝑦1 + 𝑦0

= 𝑥1𝑦1 + 𝑥1𝑦0 + 𝑥0𝑦1 + 𝑥0𝑦0
𝑥1𝑦0 + 𝑥0𝑦1 = 𝛼𝛽 − 𝑥1𝑦1 − 𝑥0𝑦0

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit

integers in O(n1.585…) bit operations.

To multiply two n-bit integers:

Add two 𝑛/2 bit integers.

Multiply three 𝑛/2-bit integers.

Add, subtract, and shift 𝑛/2-bit integers to obtain result.

𝑇 𝑛 = 3𝑇
𝑛

2
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 3 = 𝑂(𝑛1.585…)

𝑥 = 2𝑛/2 ⋅ 𝑥1 + 𝑥0 ⇒ 𝛼 = 𝑥1 + 𝑥0
𝑦 = 2𝑛/2 ⋅ 𝑦1 + 𝑦0 ⇒ 𝛽 = 𝑦1 + 𝑦0
𝑥𝑦 = 2𝑛/2 ⋅ 𝑥1 +𝑥0 2𝑛/2 ⋅ 𝑦1 + 𝑦0

= 2𝑛 ⋅ 𝑥1𝑦1 + 2 Τ𝑛 2 ⋅ 𝑥1𝑦0 + 𝑥0𝑦1 + 𝑥0𝑦0
A B𝛼𝛽 − 𝐴 − 𝐵

Integer Multiplication (Summary)

• Exercise: generalize Karatsuba to do 5 size
𝑛/3 subproblems

This gives Θ 𝑛1.46… time algorithm

2019 Harvey-Hoeven 𝑂(𝑛 log 𝑛)

40

Integer Multiplication (Summary)

Matrix Multiplication

42

Multiplying Matrices

Let 𝐴 be an 𝑛 ×𝑚 matrix, 𝐵 be an 𝑚 × 𝑝 matrix.

Then, 𝐶 = 𝐴𝐵 is an 𝑛 × 𝑝 matrix

such that

Question: Why matrix multiplication is defined in such way?

43

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

Multiplying Matrices

44

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

Multiplying Matrices

45

•

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa

babababababababababababa

babababababababababababa

babababababababababababa

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

Multiplying Matrices

46

• 𝑇(𝑛) = 8𝑇(𝑛/2) + 4
𝑛

2

2
= 8𝑇(𝑛/2) + 𝑛2

So, 𝑇 𝑛 = Θ 𝑛log28 = Θ(𝑛3)

A11 A12

A21

A11B12+A12B22

A22

A11B11+A12B21

B11 B12

B21 B22

A21B12+A22B22
A21B11+A22B21

=

Simple Divide and Conquer

47

• Strassen’s algorithm
Multiply 𝟐 × 𝟐 matrices using 𝟕 instead of 𝟖

multiplications (and 18 additions)

𝑇 𝑛 = 7𝑇
𝑛

2
+ 18𝑛

Hence, we have 𝑇 𝑛 = 𝑂 𝑛log2 7 .

Strassen’s Divide and Conquer Algorithm

Useful when 𝑛~500.

One of the most important open problem:

Solve matrix multiplication in O(𝑛2log𝑂 1 𝑛) time

Naive Strassen

48

Strassen’s Divide and Conquer Algorithm

How did Strassen come up with his matrix multiplication method?

Stackexchange: I've been told no-one really knows, anything would be mainly speculation.

