

Dynamic Programming

Yin Tat Lee

Announcement

- No Homework due this week.
- Office hour is both on Zoom and in person this and next week.
 - (As requested by some student.)
- My OH is on Monday. (Sorry that it was not clear in the website before)
- We haven't graded the midterm. It will be done this week.

Jeremy Lin has created a time machine. Now, he knows exactly the price of \$GME for the next *n* days, which are p_1, p_2, \dots, p_n .

Give an algorithm for Jeremy to finds the best days to buy and sell the stocks.

Weighted Interval Scheduling

Interval Scheduling

- Job *j* starts at s(j) and finishes at f(j) and has weight w_j
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.
 Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

Weighted Job Scheduling by Induction

Suppose 1, ..., *n* are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for < n jobs.

IS: Goal: For any *n* jobs we can compute OPT. Case 1: Job *n* is not in OPT. -- Then, just return OPT of 1, ..., n - 1. Case 2: Job *n* is in OPT.

-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done? A: No, How many subproblems are there? Potentially 2^n all possible subsets of jobs.

Sorting to Reduce Subproblems

Why can't we order by start time?

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ IS: For jobs 1, ..., *n* we want to compute OPT

Case 1: Suppose OPT has job n.

- So, all jobs *i* that are not compatible with *n* are not OPT
- Let p(n) =largest index i < n such that job i is compatible with n.
- Then, we just need to find optimal schedule for jobs 1, ..., p(n)

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ IS: For jobs 1, ..., *n* we want to compute OPT

Case 1: Suppose OPT has job *n*.

- So, all jobs *i* that are not compatible with *n* are not in OPT
- Let p(n) =largest index i < n such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., p(n)

Case 2: OPT does not select job n.

• Then, OPT is just the OPT of 1, ..., n-1

Take best of the two

Q: Have we made any progress (still reducing to two subproblems)? A: Yes! This time every subproblem is of the form 1, ..., *i* for some *i* So, at most *n* possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$ Def OPT(j) denote the weight of OPT solution of $1, \dots, j$

To solve OPT(j): Case 1: OPT(j) has job *j*.

- So, all jobs that are not compatible with j are not in OPT(j).
- Let p(j) =largest index i < j such that job i is compatible with j.
- So $OPT(j) = OPT(p(j)) + w_j$.

Case 2: OPT(j) does not select job j.

• Then, OPT(j) = OPT(j-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\left(w_j + OPT(p(j)), OPT(j-1)\right) & \text{o.w.} \end{cases}$$

Algorithm

```
Input: n, s(1), \ldots, s(n) and f(1), \ldots, f(n) and w_1, \ldots, w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), \ldots, p(n)
OPT(j) {
    if ( j = 0 )
        return 0
    else
        return max (w_j + OPT(p(j)), OPT(j-1)).
}
```

Recursive Algorithm Fails

Even though we have only n subproblems, if we do not store the solution to the subproblems

 \succ we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty
M[0] = 0
OPT(i) {
   if (M[j] is empty)
       M[j] = max (w_i + OPT(p(j)), OPT(j-1)).
   return M[j]
}
```

In practice, you may get rightarrow stackoverflow if $n \gg 10^6$ (depends on the language). 13

Bottom up Dynamic Programming

You can also avoid recursion

recursion may be easier conceptually when you use induction

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
OPT(j) \{
M[0] = 0
for j = 1 to n
M[j] = max (w_j + M[p(j)], M[j-1]).
}
Output M[n]
```

Claim: M[j] is value of OPT(j)Timing: Easy. Main loop is O(n); sorting is $O(n \log n)$.

Dynamic Programming

 Give a solution of a problem using smaller (overlapping) sub-problems where the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and again in the solution.

How to recover the solution?

We can simply maintain the solution.

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
                                             What is the runtime of
OPT(j) {
   M[0] = 0
                                              this new algorithm?
   S[0] = \{\}
   for j = 1 to n
       if w_i + M[p(j)] > M[j-1]
                                                  Each S[j] points to some
          M[j] = w_i + M[p(j)].
                                                 vertices of a tree.
          s_{j} = \{j\} \cup s_{p(j)} O(1) time \leftarrow We add leaf j with its
       else
                                                     parent S[p(j)].
          M[j] = M[j-1]
          S[j] = S[j-1]
                                    O(1) time
```

}

Jeremy Lin has created a time machine. Now, he knows exactly the price of \$GME for the next *n* days, which are p_1, p_2, \dots, p_n .

Somehow, Jeremy doesn't want to be labeled as greedy.

So, can you use dynamic programming to help Jeremy instead?

\mathbf{W} Let w_k be the Jeremy Lin's net worth on the k-th day. Then, we have

$$egin{aligned} &w_k = w_{k-1} imes p_k / p_{k-1} \ &w_k = \max(w_{k-1} imes p_k / p_{k-1}, w_{k-1}) \ &w_k = \max(w_{k-1} + p_k - p_{k-1}, w_{k-1}) \ &w_k = w_{k-1} + p_k - p_{k-1} \ &w_k = w_{k-1} imes \max(p_k / p_{k-1}, 0) \end{aligned}$$

Total Results: 0

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Life is not easy. Robinhood doesn't want someone to hold \$GME to the moon 💉 💉

Now, Jeremy can only hold \$GME for at most 2 consecutive days.

So, what is the formula for w_k ?

$$w_k = \max\left(w_{k-1}, w_{k-2} \frac{p_k}{p_{k-1}}, w_{k-3} \frac{p_k}{p_{k-2}}\right)$$

Knapsack Problem

Knapsack Problem

Given *n* objects and a "knapsack."

Item *i* weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy: repeatedly add item with maximum ratio v_i/w_i .

Ex: { 5, 2, 1 } achieves only value = $35 \implies$ greedy not optimal.

	Item	Value	Weight
	1	1	1
11	2	6	2
	3	18	5
	4	22	6
	5	28	7

Dynamic Programming: First Attempt

Let OPT(i) = Max value of subsets of items 1, ..., *i* of weight $\leq W$.

Case 1: *OPT*(*i*) does not select item *i*

- In this case OPT(i) = OPT(i-1)

Case 2: OPT(i) selects item *i*

- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to OPT(i-1) because we now want to pack as much value into box of weight $\leq W w_i$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthening Hypothesis)

What is the ordering of item we should pick?

Let OPT(i, w) = Max value of subsets of items 1, ..., *i* of weight $\leq w$

Case 1: *OPT*(*i*, *w*) selects item *i*

• In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$

Case 2: OPT(i, w) does not select item i

• In this case, OPT(i, w) = OPT(i - 1, w).

Take best of the two

Therefore,

$$OPT(i,w) = \begin{cases} 0 & \text{If } i = 0\\ OPT(i-1,w) & \text{If } w_i > w\\ \max(OPT(i-1,w), v_i + OPT(i-1,w-w_i)) & \text{O.W.}, \end{cases}$$

```
Comp-OPT(i,w)
if M[i,w] == empty
if (i==0)
    M[i,w]=0
    recursive
else if (w<sub>i</sub> > w)
    M[i,w]= Comp-OPT(i-1,w)
else
    M[i,w]= max {Comp-OPT(i-1,w), v<sub>i</sub> + Comp-OPT(i-1,w-w<sub>i</sub>)}
return M[i, w]
```

```
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
    if (w<sub>i</sub> > w)
        M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}
```

```
return M[n, W]
```

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0											
 n + 1	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
Ļ	{1,2,3,4,5}	0											

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w]	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
Ļ	{1,2,3,4,5}	0											

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w]	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7								
	{ 1, 2, 3 }	0	1										
	{ 1, 2, 3, 4 }	0	1										
Ļ	{1,2,3,4,5}	0	1										

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w]	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19					
	{ 1, 2, 3, 4 }	0	1										
ļ	{1,2,3,4,5}	0	1										

		Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w]		3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w]\}$	-w,]}	4	22	6
	-	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29		
ļ	{1,2,3,4,5}	0	1										

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w]	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
Ļ	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40	W = 11	Item	Value	Weight
		1	1	1
<pre>if (w_i > w) M[i, w] = M[i-1, w] else M[i, w] = max {M[i-1, w], v_i + M[i-1, w-w_i]}</pre>		2	6	2
		3	18	5
		4	22	6
		5	28	7

Life is not easy. Robinhood doesn't want someone to hold \$GME to the moon 💉 💉

Now, Jeremy can only hold \$GME for at most 2 consecutive days. and can only trade \$GME for at most *t* times.

So, what is the best trading? Let $w_{k,t}$ be the network at k-th day using t trades.

$$w_{k,t} = \max\left(w_{k-1,t}, w_{k-2,t-1} \frac{p_k}{p_{k-1}}, w_{k-3,t-1} \frac{p_k}{p_{k-2}}\right).$$

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:

There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time Poly(n).

UW Expert

DP Ideas so far

- You may have to define an ordering to decrease #subproblems
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.

 This means that sometimes we may have to use two dimensional or three dimensional induction