CSE 421

Dynamic Programming

Yin Tat Lee

Announcement

- No Homework due this week.
- Office hour is both on Zoom and in person this and next week. - (As requested by some student.)
- My OH is on Monday. (Sorry that it was not clear in the website before)
- We haven't graded the midterm. It will be done this week.

Jeremy Lin has created a time machine. Now, he knows exactly the price of $\$$ GME for the next n days, which are $p_{1}, p_{2}, \cdots, p_{n}$.

Give an algorithm for Jeremy to finds the best days to buy and sell the stocks.

Weighted Interval Scheduling

Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

by finish

by weight

Weighted Job Scheduling by Induction

Suppose 1, ... n are all jobs. Let us use induction:
IH : Suppose we can compute the optimum job scheduling for $<n$ jobs.
IS: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.
-- Then, just return OPT of $1, \ldots, n-1$.
Take best of the two
Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.
Q: Are we done?
A: No, How many subproblems are there?
Potentially 2^{n} all possible subsets of jobs.

Sorting to Reduce Subproblems

Why can't we order by start time?
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ IS: For jobs $1, \ldots, n$ we want to compute OPT

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $p(n)=$ largest index $i<n$ such that job i is compatible with n.
- Then, we just need to find optimal schedule for jobs $1, \ldots, p(n)$

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
IS: For jobs $1, \ldots, n$ we want to compute OPT
Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not in OPT
- Let $p(n)=$ largest index $i<n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$

Case 2: OPT does not select job n.

- Then, OPT is just the OPT of $1, \ldots, n-1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ Def $O P T(j)$ denote the weight of OPT solution of $1, \ldots, j$

To solve $O P T(j)$:
The most important part of a correct DP; It fixes IH
Case 1: OPT(j) has job j.

- So, all jobs that are not compatible with j are not in $O P T(j)$.
- Let $p(j)=$ largest index $i<j$ such that job i is compatible with j.
- So $O P T(j)=O P T(p(j))+w_{j}$.

Case 2: OPT(j) does not select job j.

- Then, $O P T(j)=O P T(j-1)$.

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max \left(w_{j}+O P T(p(j)), O P T(j-1)\right) & \text { o.w. }
\end{array}\right.
$$

Algorithm

```
Input: }n,s(1),\ldots,s(n)\mathrm{ and }f(1),\ldots,f(n)\mathrm{ and w
Sort jobs by finish times so that f(1)\leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
OPT(j) {
    if (j=0)
            return 0
    else
        return max (wj+OPT(p(j)),OPT(j-1)).
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, if we do not store the solution to the subproblems
$>$ we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
OPT(j) {
    if (M[j] is empty)
        M[j] = max (w w +OPT}(p(j)),OPT(j-1))
    return M[j]
}
```


Bottom up Dynamic Programming

You can also avoid recursion

- recursion may be easier conceptually when you use induction

```
Input: \(n, s(1), \ldots, s(n)\) and \(f(1), \ldots, f(n)\) and \(w_{1}, \ldots, w_{n}\).
Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n)\).
Compute \(p(1), p(2), \ldots, p(n)\)
OPT( \(\boldsymbol{j})\) \{
    \(\mathrm{m}[0]=0\)
    for \(\mathrm{j}=1\) to n
        \(M[j]=\max \left(w_{j}+M[p(j)], M[j-1]\right)\).
\}
Output M[n]
```

Claim: $M[j]$ is value of $O P T(j)$
Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Dynamic Programming

- Give a solution of a problem using smaller (overlapping) sub-problems where
the parameters of all sub-problems are determined in-advance
- Useful when the same subproblems show up again and again in the solution.

How to recover the solution?

We can simply maintain the solution.

```
Input: }n,s(1),\ldots,s(n)\mathrm{ and }f(1),\ldots,f(n)\mathrm{ and }\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{n}{}
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
OPT(j){
    M[0] = 0
    S[0] = {}
    for j = 1 to n
        if w
            M[j] = wi}+M[p(j)]
            S[j] = {j} U S[p(j)] O(1) time
        else
            M[j] = M[j-1]
            S[j] = S[j-1]
}
```

What is the runtime of this new algorithm?

Each $\mathrm{S}[j]$ points to some vertices of a tree.
\leftarrow We add leaf j with its parent $S[p(j)]$.
Output M[n] and $S[n]$

Output $M[n]$ and $S[n]$

Jeremy Lin has created a time machine. Now, he knows exactly the price of $\$$ GME for the next n days, which are $p_{1}, p_{2}, \cdots, p_{n}$.

Somehow, Jeremy doesn't want to be labeled as greedy.
So, can you use dynamic programming to help Jeremy instead?

Let w_{k} be the Jeremy Lin's net worth on the k-th day. Then, we have

$$
\begin{aligned}
& w_{k}=w_{k-1} \times p_{k} / p_{k-1} \\
& w_{k}=\max \left(w_{k-1} \times p_{k} / p_{k-1}, w_{k-1}\right) \\
& w_{k}=\max \left(w_{k-1}+p_{k}-p_{k-1}, w_{k-1}\right) \\
& w_{k}=w_{k-1}+p_{k}-p_{k-1} \\
& w_{k}=w_{k-1} \times \max \left(p_{k} / p_{k-1}, 0\right)
\end{aligned}
$$

Quiz

Life is not easy.
Robinhood doesn't want someone to hold \$GME to the moon

Now, Jeremy can only hold \$GME for at most 2 consecutive days.
So, what is the formula for w_{k} ?

$$
w_{k}=\max \left(w_{k-1}, w_{k-2} \frac{p_{k}}{p_{k-1}}, w_{k-3} \frac{p_{k}}{p_{k-2}}\right) .
$$

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack."
Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.

Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3,4\}$ with value 40 .

	Item	Value	Weight
	1	1	1
$W=11$	2	6	2
	3	18	5
	4	22	6
	5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: First Attempt

Let $O P T(i)=$ Max value of subsets of items $1, \ldots, i$ of weight $\leq W$.
Case 1: OPT(i) does not select item i

- In this case $\operatorname{OPT}(i)=\operatorname{OPT}(i-1)$

Case 2: OPT(i) selects item i

- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $\operatorname{OPT}(i-1)$ because we now want to pack as much value into box of weight $\leq W-w_{i}$

Conclusion: We need more subproblems, we need to strengthen IH .

Stronger DP (Strengthening Hypothesis)

What is the ordering of item we should pick?
Let $O P T(i, w)=$ Max value of subsets of items $1, \ldots, i$ of weight $\leq w$
Case 1: OPT (i, w) selects item i

- In this case, $\operatorname{OPT}(i, w)=v_{i}+O P T\left(i-1, w-w_{i}\right)$

Case 2: $O P T(i, w)$ does not select item i

- In this case, $\operatorname{OPT}(i, w)=O P T(i-1, w)$.

Therefore,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { If } i=0 \\ \operatorname{OPT}(i-1, w) & \text { If } w_{i}>w \\ \max \left(\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right) & \text { O.w., }\end{cases}
$$

DP for Knapsack

```
Comp-OPT (i,w)
    if M[i,w] == empty
        if ( \(i==0\) )
        M[i,w]=0
    recursive
    else if ( \(w_{i}>w^{\prime}\) )
        M[i,w]= Comp-OPT(i-1,w)
    else
        M[i,w]= max \(\left\{\operatorname{Comp-OPT}(i-1, w), \mathbf{v}_{\mathbf{i}}+\operatorname{Comp-OPT}\left(i-1, w-w_{i}\right)\right\}\)
    return \(\mathrm{M}[\mathrm{i}, \mathrm{w}]\)
```

```
for \(w=0\) to \(w\)
    \(\mathrm{M}[0, \mathrm{w}]=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(W\)
        if ( \(\left.w_{i}>w\right)\)
        M[i, w] = M[i-1, w]
        else
            \(\mathrm{M}[\mathrm{i}, \mathrm{w}]=\max \left\{\mathrm{M}[i-1, w], \mathrm{v}_{\mathrm{i}}+\mathrm{M}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right\}\)
```

return $\mathrm{M}[\mathrm{n}, \mathrm{W}]$

DP for Knapsack

$$
W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0											
$n+1$	\{ 1,2 \}	0											
	$\{1,2,3\}$	0											
	$\{1,2,3,4\}$	0											
	$\{1,2,3,4,5\}$	0											

```
if (wi > w)
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0											
	\{ 1, 2, 3 \}	0											
	$\{1,2,3,4\}$	0											
\downarrow	$\{1,2,3,4,5\}$	0											

$$
\begin{aligned}
& \text { if } \quad\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7								
	$\{1,2,3\}$	0	1										
	$\{1,2,3,4\}$	0	1										
\downarrow	$\{1,2,3,4,5\}$	0	1										

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad \text { M[i, w] }=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
\ldots+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18	19					
	$\{1,2,3,4\}$	0	1										
	$\{1,2,3,4,5\}$	0	1										

$$
W=11
$$

```
if (wis > w)
    M[i, w] = M[i-1,w]
else
    M[i, w] = max {M[i-1,w], vi
```

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
\ldots \quad W+1
$$

| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 11 |
| :---: |
| $n+1$ |

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

		0	1	2	3	4	5	6	7	8	9	10
11												
$n+1$	$\{1\}$	0	0	0	0	0	0	0	0	0	0	0

OPT: $\{4,3\}$

$$
\text { value }=22+18=40
$$

$$
W=11
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Life is not easy.
Robinhood doesn't want someone to hold \$GME to the moon
Now, Jeremy can only hold $\$$ GME for at most 2 consecutive days. and can only trade $\$$ GME for at most t times.

So, what is the best trading?
Let $w_{k, t}$ be the network at k-th day using t trades.

$$
w_{k, t}=\max \left(w_{k-1, t}, w_{k-2, t-1} \frac{p_{k}}{p_{k-1}}, w_{k-3, t-1} \frac{p_{k}}{p_{k-2}}\right) .
$$

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time Poly (n).

DP Ideas so far

- You may have to define an ordering to decrease \#subproblems
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

