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Announcement

• No Homework due this week.

• Office hour is both on Zoom and in person this and next week.

• (As requested by some student.)

• My OH is on Monday. (Sorry that it was not clear in the website 

before)

• We haven’t graded the midterm. It will be done this week.
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Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the 

price of $GME for the next 𝑛 days, which are 𝑝1, 𝑝2, ⋯ , 𝑝𝑛.

Give an algorithm for Jeremy to finds the best days to buy and sell the 

stocks.
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Weighted Interval Scheduling



Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤𝑗
• Two jobs compatible if they don’t overlap.

• Goal: find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

• Consider jobs in ascending order of finishing time

• Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are 

allowed:
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Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for < 𝑛 jobs.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse. 

Q: Are we done?

A: No, How many subproblems are there?

Potentially 2𝑛 all possible subsets of jobs. 
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Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝 𝑛 = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find optimal schedule for jobs 1, … , 𝑝(𝑛)
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Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not in OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?

A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖

So, at most 𝑛 possible subproblems.
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Take best of the two



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1,… , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗. 

• So, all jobs that are not compatible with 𝑗 are not in 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗 .

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.
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Algorithm
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

if ( 𝒋 = 𝟎 )

return 𝟎
else

return 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏 ).
}



Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, if we do not store the 

solution to the subproblems

➢ we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 

grows like Fibonacci sequence
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Algorithm with Memoization
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {

if (M[j] is empty)

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏 ).
return M[j]

}

Memorization.  Compute and Store the solution of each sub-problem  

in a cache the first time that you face it. lookup as needed.

In practice, you may get                         if 𝑛 ≫ 106 (depends on the language).



Bottom up Dynamic Programming
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

M[0] = 0

for j = 1 to n

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 +𝑴 𝒑 𝒋 ,𝑴 𝒋 − 𝟏 ).
}

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)
Timing: Easy.  Main loop is 𝑂(𝑛); sorting is 𝑂(𝑛 log 𝑛).



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
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• Give a solution of a problem using smaller (overlapping) 
sub-problems where 

the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and 
again in the solution. 

Dynamic Programming



How to recover the solution?

26

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋){
M[0] = 0

S[0] = {}

for j = 1 to n

if 𝒘𝒋 +𝑴 𝒑 𝒋 > 𝑴 𝒋 − 𝟏

M[j] = 𝒘𝒋 +𝑴 𝒑 𝒋 .

S[j] = {j} ∪ S[𝒑 𝒋 ]
else

M[j] = M[j-1]

S[j] = S[j-1]

}

Output M[n] and S[n]

We can simply maintain the solution.

What is the runtime of 

this new algorithm?

𝑂(1) time

𝑂(1) time

Each S[j] points to some 

vertices of a tree.

 We add leaf 𝑗 with its 

parent 𝑆[𝑝 𝑗 ].



Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the 

price of $GME for the next 𝑛 days, which are 𝑝1, 𝑝2, ⋯ , 𝑝𝑛.

Somehow, Jeremy doesn’t want to be labeled as greedy.

So, can you use dynamic programming to help Jeremy instead?
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Quiz

Life is not easy. 

Robinhood doesn’t want someone to hold $GME to the moon

Now, Jeremy can only hold $GME for at most 2 consecutive days.

So, what is the formula for 𝑤𝑘?

𝑤𝑘 = max 𝑤𝑘−1, 𝑤𝑘−2

𝑝𝑘
𝑝𝑘−1

, 𝑤𝑘−3

𝑝𝑘
𝑝𝑘−2

.
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Knapsack Problem



Knapsack Problem

Given 𝑛 objects and a "knapsack.“

Item 𝑖 weighs 𝑤𝑖 > 0 kilograms and has value 𝑣𝑖 > 0.

Knapsack has capacity of 𝑊 kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy:  repeatedly add item with maximum ratio 𝑣𝑖/𝑤𝑖.

Ex:  { 5, 2, 1 } achieves only value = 35   greedy not optimal.
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Dynamic Programming: First Attempt

Let 𝑂𝑃𝑇 𝑖 = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item 𝑖
- In this case 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to reject 

other items

• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now 

want to pack as much value into box of weight ≤ 𝑊 −𝑤𝑖

Conclusion: We need more subproblems, we need to strengthen IH.
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Stronger DP (Strengthening Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑤

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣𝑖 + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤𝑖)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

33

𝑂𝑃𝑇 𝑖, 𝑤 = ቐ

0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤𝑖 )

Take best of the two

If 𝑖 = 0
If 𝑤𝑖 > 𝑤
o.w.,

What is the ordering of item we should pick?



DP for Knapsack

34

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Comp-OPT(i,w)

if M[i,w] == empty 

if (i==0)

M[i,w]=0

else if (wi > w)

M[i,w]= Comp-OPT(i-1,w)

else

M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}        

return M[i, w]

recursive

Non-recursive



DP for Knapsack
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DP for Knapsack
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0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

7
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29
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40

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40



Quiz

Life is not easy. 

Robinhood doesn’t want someone to hold $GME to the moon

Now, Jeremy can only hold $GME for at most 2 consecutive days.

and can only trade $GME for at most 𝑡 times.

So, what is the best trading?

Let 𝑤𝑘,𝑡 be the network at 𝑘-th day using 𝑡 trades.

𝑤𝑘,𝑡 = max 𝑤𝑘−1,𝑡, 𝑤𝑘−2,𝑡−1

𝑝𝑘
𝑝𝑘−1

, 𝑤𝑘−3,𝑡−1

𝑝𝑘
𝑝𝑘−2

.
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Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)

• Not polynomial in input size!

• "Pseudo-polynomial.“

• Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm:  

There exists a polynomial algorithm that produces a feasible 

solution that has value within 0.01% of optimum 

in time Poly(𝑛).

42
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DP Ideas so far

• You may have to define an ordering to decrease 

#subproblems

• You may have to strengthen DP, equivalently the induction, 

i.e., you have may have to carry more information to find the 

Optimum. 

• This means that sometimes we may have to use two 

dimensional or three dimensional induction
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