
CSE 421

Dynamic Programming

Yin Tat Lee

1

Announcement

• No Homework due this week.

• Office hour is both on Zoom and in person this and next week.

• (As requested by some student.)

• My OH is on Monday. (Sorry that it was not clear in the website

before)

• We haven’t graded the midterm. It will be done this week.

2

Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the

price of $GME for the next 𝑛 days, which are 𝑝1, 𝑝2, ⋯ , 𝑝𝑛.

Give an algorithm for Jeremy to finds the best days to buy and sell the

stocks.

3

Weighted Interval Scheduling

Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤𝑗
• Two jobs compatible if they don’t overlap.

• Goal: find maximum weight subset of mutually compatible jobs.

5

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

• Consider jobs in ascending order of finishing time

• Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are

allowed:

6

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by weight

Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for < 𝑛 jobs.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?

A: No, How many subproblems are there?

Potentially 2𝑛 all possible subsets of jobs.

7

Take best of the two

𝑛

𝑛 − 1 𝑛 − 2

𝑛 − 2 𝑛 − 3 𝑛 − 3 𝑛 − 4

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛.

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝 𝑛 = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find optimal schedule for jobs 1, … , 𝑝(𝑛)

8
𝑛

𝑛 − 1

𝑛 − 2

𝑝(𝑛) + 1

𝑝(𝑛)

1

Why can’t we order by start time?

Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛.

• So, all jobs 𝑖 that are not compatible with 𝑛 are not in OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?

A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖

So, at most 𝑛 possible subproblems.

9

Take best of the two

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1,… , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗.

• So, all jobs that are not compatible with 𝑗 are not in 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗 .

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

10

The most important part of a correct DP; It fixes IH

Algorithm

11

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

if (𝒋 = 𝟎)

return 𝟎
else

return 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏).
}

Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, if we do not store the

solution to the subproblems

➢ we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances

grows like Fibonacci sequence

12

3

4

5

1

2

𝑝 1 = 0, 𝑝 𝑗 = 𝑗 − 2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

13

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {

if (M[j] is empty)

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏).
return M[j]

}

Memorization. Compute and Store the solution of each sub-problem

in a cache the first time that you face it. lookup as needed.

In practice, you may get if 𝑛 ≫ 106 (depends on the language).

Bottom up Dynamic Programming

14

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

M[0] = 0

for j = 1 to n

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 +𝑴 𝒑 𝒋 ,𝑴 𝒋 − 𝟏).
}

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)
Timing: Easy. Main loop is 𝑂(𝑛); sorting is 𝑂(𝑛 log 𝑛).

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

OPT(j)p(j)𝑤𝑗j

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

3

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

3

4

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

77

7

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

548

327

236

045

134

013

042

031

00

p(j)𝑤𝑗j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

4

4

6

6

7

7

10

OPT(j)

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.

• Give a solution of a problem using smaller (overlapping)
sub-problems where

the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and
again in the solution.

Dynamic Programming

How to recover the solution?

26

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋){
M[0] = 0

S[0] = {}

for j = 1 to n

if 𝒘𝒋 +𝑴 𝒑 𝒋 > 𝑴 𝒋 − 𝟏

M[j] = 𝒘𝒋 +𝑴 𝒑 𝒋 .

S[j] = {j} ∪ S[𝒑 𝒋]
else

M[j] = M[j-1]

S[j] = S[j-1]

}

Output M[n] and S[n]

We can simply maintain the solution.

What is the runtime of

this new algorithm?

𝑂(1) time

𝑂(1) time

Each S[j] points to some

vertices of a tree.

 We add leaf 𝑗 with its

parent 𝑆[𝑝 𝑗].

Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the

price of $GME for the next 𝑛 days, which are 𝑝1, 𝑝2, ⋯ , 𝑝𝑛.

Somehow, Jeremy doesn’t want to be labeled as greedy.

So, can you use dynamic programming to help Jeremy instead?

27

28

Quiz

Life is not easy.

Robinhood doesn’t want someone to hold $GME to the moon

Now, Jeremy can only hold $GME for at most 2 consecutive days.

So, what is the formula for 𝑤𝑘?

𝑤𝑘 = max 𝑤𝑘−1, 𝑤𝑘−2

𝑝𝑘
𝑝𝑘−1

, 𝑤𝑘−3

𝑝𝑘
𝑝𝑘−2

.

29

Knapsack Problem

Knapsack Problem

Given 𝑛 objects and a "knapsack.“

Item 𝑖 weighs 𝑤𝑖 > 0 kilograms and has value 𝑣𝑖 > 0.

Knapsack has capacity of 𝑊 kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy: repeatedly add item with maximum ratio 𝑣𝑖/𝑤𝑖.

Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal.

31

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2W = 11

Dynamic Programming: First Attempt

Let 𝑂𝑃𝑇 𝑖 = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item 𝑖
- In this case 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to reject

other items

• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now

want to pack as much value into box of weight ≤ 𝑊 −𝑤𝑖

Conclusion: We need more subproblems, we need to strengthen IH.

32

Stronger DP (Strengthening Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑤

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣𝑖 + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤𝑖)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

33

𝑂𝑃𝑇 𝑖, 𝑤 = ቐ

0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤𝑖)

Take best of the two

If 𝑖 = 0
If 𝑤𝑖 > 𝑤
o.w.,

What is the ordering of item we should pick?

DP for Knapsack

34

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Comp-OPT(i,w)

if M[i,w] == empty

if (i==0)

M[i,w]=0

else if (wi > w)

M[i,w]= Comp-OPT(i-1,w)

else

M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}

return M[i, w]

recursive

Non-recursive

DP for Knapsack

35

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

36

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

37

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

7

DP for Knapsack

38

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19

DP for Knapsack

39

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29

DP for Knapsack

40

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

Quiz

Life is not easy.

Robinhood doesn’t want someone to hold $GME to the moon

Now, Jeremy can only hold $GME for at most 2 consecutive days.

and can only trade $GME for at most 𝑡 times.

So, what is the best trading?

Let 𝑤𝑘,𝑡 be the network at 𝑘-th day using 𝑡 trades.

𝑤𝑘,𝑡 = max 𝑤𝑘−1,𝑡, 𝑤𝑘−2,𝑡−1

𝑝𝑘
𝑝𝑘−1

, 𝑤𝑘−3,𝑡−1

𝑝𝑘
𝑝𝑘−2

.

41

Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)

• Not polynomial in input size!

• "Pseudo-polynomial.“

• Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:

There exists a polynomial algorithm that produces a feasible

solution that has value within 0.01% of optimum

in time Poly(𝑛).

42
UW Expert

DP Ideas so far

• You may have to define an ordering to decrease

#subproblems

• You may have to strengthen DP, equivalently the induction,

i.e., you have may have to carry more information to find the

Optimum.

• This means that sometimes we may have to use two

dimensional or three dimensional induction

43

