Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the
price of $GME for the next n days, which are py,p,, -, py.

Suppose Jeremy can only trade $GME for at most t times.
So, what is the best trading?
Let wy . be the network at k-th day using t trades.

Pk
Wk,t = Mmax (Wk—l,t' r]n<a’g((Wj,t—l p_ .
J

This solution technically is wrong. What is the mistake?
| omitted initial cases.

CSE 421

Dynamic Programming
RNA, Sequence Alignment

Yin Tat Lee

Announcement

HWS5 will be posted tonight. Sorry for the late.

Swati OH is moved to Sunday (virtual). See website.

Midterm is graded. Check your score on Canvas.

Come to any OH for any grading mistakes.

Come to my OH to get back the midterm (for in-person midterm)

| will post the midterm solution tonight.

Midterm

Here is the statistics

percentile Q1 Q2 Q3 Q4 Q5 Total
25% 12 (75%) 17.5(72%) 6.5(65%) 3(20%) 18 (72%) 66 (73%)
50% 14 (88%) 21 (87.5%) 9 (90%) 8 (53%) 24 (96%) 72.8 (81%)

75% 16 (100%) 21 (87.5%) 10 (100%) 14.5(97%) 25 (100%) 80.8 (90%)

Q4 is the hardest one.
It is modified from some problem in a programming contest.

If you get >= 50/90 in this midterm, you are on track for a 3.4
(depending on your homework)

Midterm

.« n-2°8° " s not 0(nd).
Note that n - 2108° n = p1+logn \which is not even polynomial.

¢ Some write n!°824, Please write n? instead.

 Don’t write a large ambiguous paragraph to describe your algo.
Use pseudo code instead. We will deduct point in final.

« MST takes O(mlogn) or O(m + nlogn), but not O(nlogn).

« Q5, you don’t need to do induction.

Knapsack Problem

Given n objects and a "knapsack.”

ltem i weighs w; > 0 kilograms and has value v; > 0.
Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is {3, 4 } with value 40. 1 1 1
w=11 2 6 2

3 18 5

4 22 6

5 28 7

Greedy: repeatedly add item with maximum ratio v; /w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

Stronger DP (Strengthening Hypothesis)

Let OPT(i,w) = Max value of subsets of items 1, ..., i of weight < w

Case 1: OPT(i,w) selects item i
* Inthis case, OPT(i,w) =v; + OPT(i — 1,w — w;)
Case 2: OPT(i,w) does not select item i Take best of the two
* Inthis case, OPT(i,w) = OPT(i — 1,w).

\/

Therefore,

0 Ifi =0
OPT(i,w) =< OPT(i — 1,w) Ifw;, >w
max(OPT(i —1,w),v; + OPT(i — 1,w —w;)) o0.w.,

RNA Secondary Structure

RNA Secondary Structure

RNA: A String B = b,b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA Is single-stranded so it tends to loop
back and form base pairs with itself. This structure is essential
for understanding behavior of molecule.

C— A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A/ N\ A
AN /7
A -—— U G — C
| | / \
C=-=-6——U=—A— A G
G/ | | | I
U I A= U =— U A
VN I N~
A C G [U
- - G
| I [I I s
C G C G A G- C
N 7 | |
G
A=- U
|
G

complementary base pairs: A-U, C-G 9

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs S = {(b;, b;)} that satisfy:
‘Matching]: S is a matching.

Valid]: each pairinSis:A—-U,U—-A,C—G,orG—C.

‘No sharp turns]: The ends of each pair are separated by at least 4
intervening bases. If (b;, b;) € S, theni <j — 4.

[Non-crossing] If (b;, bj) and (by, b;) are two pairs in S, then we cannot
havei < k <j <.

Free energy: Usual hypothesis is that an RNA molecule will maximize
total free energy. \

approximate by number of base pairs
Goal: Given an RNA molecule B = b,b,...b,, find a secondary structure
S that maximizes the number of base pairs.

10

Secondary Structure (Examples)

6—6 6G—6
/7 N\ (5/ \(5 /7 N\
C U \ / C U
N\ /7 N\ /

C—-6 C—-=-6 C\ LU

| | |, <_|

A—--U A—--U A G

| | | l | |

U=—-A Uu—-A U-—=-A

base pair
AUGUGGCCAU AUGGGG C AU A GUUGGCTCA AU

<4

ok sMn croddng

11

DP: First Attempt

First attempt. Let OPT (n) = maximum number of base pairs in a
secondary structure of the substring b,b,...b,.

Suppose b,, is matched with b, in OPT (n).

What IH should we use? match b, and b,
@ o O o O J @ o O J
1 t n

Difficulty: This naturally reduces to two subproblems
« Finding secondary structure in by, ..., by_q, 1.e., OPT(t-1)
* Finding secondary structure in by, 4, ..., b1, 7?7

12

DP: Second Attempt

Definition: OPT (i, j) = maximum number of base pairs in a secondary
structure of the\substring b;, b; 4, ..., b;

The most important part of a correct DP; It fixes IH

Case l: If j —i < 4.
e OPT(i,j) = 0 by no-sharp turns condition.

Case 2. Base b; is not involved in a pair.
e OPT(i,j) =O0PT(i,j — 1)

Case 3. Base b; pairs with b, forsome i <t <j—4
* non-crossing constraint decouples resulting sub-problems
e OPT(i,j) = max {1+ O0OPT(i,t—1) + OPT(t+1,j—1)}

Ist<j—4

13

Recursive Code

Let M[i,j]=empty for all i,j.

Compute-OPT (1,]) {
if (-1 <= 4)
return O;
if (M[1i,]] is empty)
M[i, j]=Compute-OPT (i, j-1)
for t=1i to j-5 do
if (bbly is in {A-U, U-A, C-G, G-C})
M[i,j]l=max(M[i,]j], 1+Compute-OPT (i, t-1) +
Compute-OPT (t+1,3j-1))
return M[]J]

Does this code terminate?

14

Formal Induction

Let OPT(i,j) = maximum number of base pairs in a secondary structure
of the substring b;, b; 4, ..., b;

Base Case: OPT(i,j) = 0 for all i, j where |j — i| < 4.

IH: For some ¢ = 4, Suppose we have computed OPT(i,j) for all i, j
where |i — j| < 4.

|S: Goal: We find OPT(i,j) for all i,j where |i —j| = € + 1. Fix i,j such
that |i — j| = € + 1.

Case 1. Base b; Is not involved in a pair.

e OPT(i,j) = OPT(i,j — 1) [this we know by IH since |[i — (j — 1)| = /]

Case 2: Base b; pairs with b, forsome i <t <j—4

e OPT(i,j) = l<rtn<a}x4{ 1+O0PT(i,t—1) + OPT(t/-I—'l Jj—1)1}

We know by IH since difference < ¢ 15

Bottom-up DP

for Y =1, 2, .., n-1 4 0
for i =1, 2, .., n-1 3|00
j=1i+ 4 '
if (£ <= 4)
M[i,j]=0; : /
L 6 7 8 9
M[i,3j]=M[i,j-1] j

for t=1 to j-5 do
if (b, bj is in {A-U, U-A, C-G, G-C})
M[i,j]l=max (M[i,]j], 1+ M[i,t-1] + M[t+1,3-1])

return M[1l, n]

Running Time: 0(n?)

(It Is also okay to loop over i,j or j,i) 6

& When poll is active, respond at pollev.com/yintat

Given n positive integers al,...,an, decide
W whether the integers can be partitioned into

3 sets, such that each set has the same sum.

Total Results: 0

Powered hv ‘h Pall Fvarvwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Quiz Solution

Let A(i, x,y, z) be true if and only if the numbers a4, a,, -+, a; can be
partitioned into three sets whose sums are x, y, z.

If i > 0, we have
A(i,x,y,2)
=A(—1,x—a;y,z)orA(i—1,x,y —a;,z) or A(i— 1,x,y,z — a;)

If i = 0, we have
A(0,x,y,z) = True if x = y = z = 0, False otherwise.

18

Sequence Alignment
(Edit distance)

Word Alignment

How similar are two strings?
ocurrance
occurrence

- [l - AOAnE
- N - B0 -

5 mismatches, 1 gap

O mismatches, 3 gaps

20

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
Cost = # of gaps + #mismatches.

[How to formalize the gquestion.]

Applications.

« Basis for Unix diff and Word correct in editors.
« Speech recognition.
« Computational biology.

B c - - c@- BcrteaccTtac@r
Al c | T|6| A RAREVINE A By ccTe6AacBTAacAT

Cost: 5 Cost: 3

21

Sequence Alignment

Given two strings x4, ..., x,,, and yy, ..., y,, find an alignment
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (x;,,y;,), (xi,,¥;,), -.. such
that il < iz < and j1 <]2 <

Example: CTACCG VS. TACATG. Xt Xp X3 X4 X
Sol: We aligned CIRTR PR RE .- 6
X27Y1s X37Y2s X47Y3: X57Ya, X6 Ys-

Bl ac T 6

So, the cost Is 3. Yi Yo Vs Vs

22

DP for Sequence Alignment

Let OPT (i, j) be min cost of aligning x4, ..., x; and yy, ..., y;

Case 1: OPT matches x;, y;
 Then, pay mis-match cost if x; # y; + min cost of aligning
X1, ., Xi—g @nd yy, ..., y;—q L€, OPT({i—1,j —1)

Case 2: OPT leaves x; unmatched
« Then, pay gap cost for x; + OPT(i — 1, j)

Case 3: OPT leaves y; unmatched
 Then, pay gap cost for y; + OPT(i,j — 1)

23

Bottom-up DP

Sequence-Alignment (m, n, x;X,...X,, YViVo--.- -¥Y,) {

for i =0 tom
M[O, i] = 1i
for j =0 ton
M[j, 0] =3
for i =1 tom

for j =1 ton
M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, 3],
1 + M[1i, j-1])
return M[m, n]

Analysis: @(mn) time and space.
Computational biology: m =n = 1,000,000. 1000 billions ops OK,

but 1TB array?
24

M[i, j] = min((x;=y, ? 0:1) + M[i-1, j-1],
1 + M[i-1, j1,

Induction 1+ M[i, 3-1])

What is the order of induction? (i.e. why there is no loop?)
We can do inductionon i + ;.
(Alternatively, we can induct on the “step” of the algorithm)

: .

N V2 V3 Va

Figure 6.17 A graph-based picture of sequence alignment. 25

Optimizing Memory
We just need to use the last (row) of computed values.

Sequence-Alignment(m, n, xX:X,...X,, YV:V--.-Yn) {
for 1 =0 tom
M[O, i] = i
for j =0 ton
M[j, 0] =73

for i =1 tom
for =1 ton
M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1+ M[i-1, 31,
1+ M[i, j-1]) k\
Justneed i — 1,i rows
to compute MJi,j]

return M[m, n]

26

DP with O(m + n) memory

Keep an Old array containing values of the last row
Fill out the new values in a New array

Copy new to old at the end of the loop

Sequence-Alignment(m, n, xX.X,...X_,, YV:V,--.-Yq) {
for i =0 tom
O[i] = 1
for 1 =1 tom
N[O]=1i
for =1 ton
N[j] = min((x,=y; ? 0:1) + O[j-11,
1+ 0[j] & M[i-1, 7]

M[i-1, j-1]

1 + N[j-1]) &——M[i, j-1]
for j =1 ton

O[j1=N[]]
return N[n]

27

M[i, j] = min((x;=y, ? 0:1) + M[i-1, j-1],
1 + M[i-1, j1,

Shortest Path 1+ M[i, 3-11)

Edit distance is the distance between (0,0) and (m, n) of the
following graph.
« All horizontal edges has cost 1.

« All vertical edges has cost 1.
 The cost of edges from (i —1,j — 1) to (i,j) IS Ly,

The graph is a DAG. x%%‘ 6

Question:
How to recover the alignment)
(or how to find the shortest path)

without using mn space”?
Vi Y2 V3 Va

Figure 6.17 A graph-based picture of sequence alignment.

28

How to recover the alignment?

ldea 1: Suffices to find the point a shortest path pass on the

middle row.
m/2

(m.n)

(M2 ,IJV//

Why?
Divide and Conquer!

| (0,0)
ldea 2: d(0,0)—>(m,n) = Iminy d(O,O)—’(m/ZJ) + d(m/z,j)—>(m,n)

Find(i,,Jj,,i,,3,) { // Due to spacing, ignored boundary cases

Let k= l(il + iz)/ZJ

Compute d(;, i -kj, for all j via Sequence-Alignment.
Compute d(k,j)ﬁ(iz,jz) for all j via similar algo run backward.

Let j = argminjd(i1yi1)—>(k:iz) +d (kj2)—(iz.42)
P1 = Find(ilrjlrkrj)
P2 = Find(k/j Ii21j2)

return P1, D2

/

29

Lesson

Advantage of a bottom-up DP:
It is much easier to optimize the space.

By the way, edit distance
e can be computed in O(s X min(m, n)) if edit distance < s

TLZ

« can be computed in O() (1980).

log2 n
 can be approximated by log factor in 0 (n!*¢) (~2010).

- cannot be solved in 0(n?~%) exactly (2015).

« can be approximated by O(1) factor in 0(n%~2/7) (~2018).
« can be approximated by O(1) factor in 0(n'*¢) (~2020).

30

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:

- It has the Hamiltonian Pathasa (&
special case

32

DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in
defining the ordering

We saw that every DAG has a topological sorting
So, let's use that as an ordering.

33

DP for Longest Path in a DAG

Suppose we have labelled the
vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at j
Suppose OPT()) is (iy, i,), (iy,i3), ..., (ix—1,ix), (ix, j), then
Obsliiy <i, <+ <0 <J.

Obs 2: (iy, 1), (iy,i3), ..., (ix—1, ix) is the longest path ending
at iy,.
OPT(j) =1+ OPT(iy).

34

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at j

| 0 If j IS a source
OPT(j) =41+ max OPT(i) 0.W.

i:(i,j) an edge

35

Outputting the Longest Path

Let G be a DAG given with a topological sorting: For all edges
(i,j) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT () {
if (in-degree(j)==0)
return 0O
if (M[j]==empty)

M[]j]=0; Record the entry that

for all edges (1i,3) .
if (M[j] < 1+Compute-ppf(i)) V€ used to compute OPT())
M[j]=1+Compute- (1)

Parent[j]=1
return M[]J]
}
Let M[k] be the maximum of M[1l],..,M[n]
While (Parentl[k]!=-1)
Print k
k=Parent[k]

36

