
Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the

price of $GME for the next 𝑛 days, which are 𝑝1, 𝑝2, ⋯ , 𝑝𝑛.

Suppose Jeremy can only trade $GME for at most 𝑡 times.

So, what is the best trading?

Let 𝑤𝑘,𝑡 be the network at 𝑘-th day using 𝑡 trades.

𝑤𝑘,𝑡 = max 𝑤𝑘−1,𝑡, max
𝑗<𝑘

𝑤𝑗,𝑡−1
𝑝𝑘
𝑝𝑗

.

This solution technically is wrong. What is the mistake?

I omitted initial cases.

1

CSE 421

Dynamic Programming

RNA, Sequence Alignment

Yin Tat Lee

2

Announcement

• HW5 will be posted tonight. Sorry for the late.

• Swati OH is moved to Sunday (virtual). See website.

• Midterm is graded. Check your score on Canvas.

• Come to any OH for any grading mistakes.

• Come to my OH to get back the midterm (for in-person midterm)

• I will post the midterm solution tonight.

3

Midterm

Here is the statistics

Q4 is the hardest one.

It is modified from some problem in a programming contest.

If you get >= 50/90 in this midterm, you are on track for a 3.4

(depending on your homework)

4

percentile Q1 Q2 Q3 Q4 Q5 Total

25% 12 (75%) 17.5 (72%) 6.5 (65%) 3 (20%) 18 (72%) 66 (73%)

50% 14 (88%) 21 (87.5%) 9 (90%) 8 (53%) 24 (96%) 72.8 (81%)

75% 16 (100%) 21 (87.5%) 10 (100%) 14.5 (97%) 25 (100%) 80.8 (90%)

Midterm

• 𝑛 ⋅ 2log
2 𝑛 is not 𝑂(𝑛3).

Note that 𝑛 ⋅ 2log
2 𝑛 = 𝑛1+log 𝑛 which is not even polynomial.

• Some write 𝑛log2 4. Please write 𝑛2 instead.

• Don’t write a large ambiguous paragraph to describe your algo.

Use pseudo code instead. We will deduct point in final.

• MST takes 𝑂 𝑚 log𝑛 or 𝑂(𝑚 + 𝑛 log𝑛), but not 𝑂(𝑛 log 𝑛).

• Q5, you don’t need to do induction.

5

Knapsack Problem

Given 𝑛 objects and a "knapsack.“

Item 𝑖 weighs 𝑤𝑖 > 0 kilograms and has value 𝑣𝑖 > 0.

Knapsack has capacity of 𝑊 kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy: repeatedly add item with maximum ratio 𝑣𝑖/𝑤𝑖.

Ex: { 5, 2, 1 } achieves only value = 35 greedy not optimal.

6

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2W = 11

Stronger DP (Strengthening Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑤

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣𝑖 + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤𝑖)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

7

𝑂𝑃𝑇 𝑖, 𝑤 = ቐ

0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤𝑖)

Take best of the two

If 𝑖 = 0
If 𝑤𝑖 > 𝑤
o.w.,

RNA Secondary Structure

RNA Secondary Structure

RNA: A String B = b1b2bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop

back and form base pairs with itself. This structure is essential

for understanding behavior of molecule.

9

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs 𝑆 = { 𝑏𝑖 , 𝑏𝑗 } that satisfy:

[Matching]: 𝑆 is a matching.

[Valid]: each pair in 𝑆 is: 𝐴 − 𝑈, 𝑈 − 𝐴, 𝐶 − 𝐺, or 𝐺 − 𝐶.

[No sharp turns]: The ends of each pair are separated by at least 4

intervening bases. If 𝑏𝑖 , 𝑏𝑗 ∈ 𝑆, then 𝑖 < 𝑗 − 4.

[Non-crossing] If (𝑏𝑖 , 𝑏𝑗) and (𝑏𝑘, 𝑏𝑙) are two pairs in 𝑆, then we cannot

have 𝑖 < 𝑘 < 𝑗 < 𝑙.

Free energy: Usual hypothesis is that an RNA molecule will maximize

total free energy.

Goal: Given an RNA molecule B = b1b2bn, find a secondary structure

S that maximizes the number of base pairs.

10

approximate by number of base pairs

Secondary Structure (Examples)

11

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G

4

base pair

DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a

secondary structure of the substring b1b2bn.

Suppose 𝑏𝑛 is matched with 𝑏𝑡 in 𝑂𝑃𝑇 𝑛 .

What IH should we use?

Difficulty: This naturally reduces to two subproblems

• Finding secondary structure in 𝑏1, … , 𝑏𝑡−1, i.e., OPT(t-1)

• Finding secondary structure in 𝑏𝑡+1, … , 𝑏𝑛−1, ???

12

1 t n

match bt and bn

DP: Second Attempt

Definition: 𝑂𝑃𝑇 𝑖, 𝑗 = maximum number of base pairs in a secondary

structure of the substring 𝑏𝑖 , 𝑏𝑖+1, … , 𝑏𝑗

Case 1: If 𝑗 − 𝑖 ≤ 4.

• 𝑂𝑃𝑇 𝑖, 𝑗 = 0 by no-sharp turns condition.

Case 2: Base 𝑏𝑗 is not involved in a pair.

• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

Case 3: Base 𝑏𝑗 pairs with 𝑏𝑡 for some 𝑖 ≤ 𝑡 < 𝑗 − 4

• non-crossing constraint decouples resulting sub-problems

• 𝑂𝑃𝑇 𝑖, 𝑗 = max
𝑖≤𝑡<𝑗−4

{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

13

The most important part of a correct DP; It fixes IH

Recursive Code

14

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){

if (j-i <= 4)

return 0;

if (M[i,j] is empty)

M[i,j]=Compute-OPT(i,j-1)

for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})

M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +

Compute-OPT(t+1,j-1))

return M[j]

}

Does this code terminate?

Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure

of the substring 𝑏𝑖 , 𝑏𝑖+1, … , 𝑏𝑗

Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.

IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such

that 𝑖 − 𝑗 = ℓ + 1.

Case 1: Base 𝑏𝑗 is not involved in a pair.

• 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇(𝑖, 𝑗 − 1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base 𝑏𝑗 pairs with 𝑏𝑡 for some 𝑖 ≤ 𝑡 < 𝑗 − 4

• 𝑂𝑃𝑇 𝑖, 𝑗 = max
𝑖≤𝑡<𝑗−4

{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

15We know by IH since difference ≤ ℓ

Bottom-up DP

16

for ℓ = 1, 2, …, n-1

for i = 1, 2, …, n-1

j = i + ℓ
if (ℓ <= 4)

M[i,j]=0;

else

M[i,j]=M[i,j-1]

for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})

M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

return M[1, n]

}

Running Time: 𝑂(𝑛3)

(It is also okay to loop over 𝑖, 𝑗 or 𝑗, 𝑖)

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

17

Quiz Solution

18

Let 𝐴(𝑖, 𝑥, 𝑦, 𝑧) be true if and only if the numbers 𝑎1, 𝑎2, ⋯ , 𝑎𝑖 can be

partitioned into three sets whose sums are 𝑥, 𝑦, 𝑧.

If 𝑖 > 0, we have

𝐴 𝑖, 𝑥, 𝑦, 𝑧
= 𝐴 𝑖 − 1, 𝑥 − 𝑎𝑖 , 𝑦, 𝑧 𝑜𝑟 𝐴 𝑖 − 1, 𝑥, 𝑦 − 𝑎𝑖 , 𝑧 𝑜𝑟 𝐴 𝑖 − 1, 𝑥, 𝑦, 𝑧 − 𝑎𝑖

If 𝑖 = 0, we have

𝐴 0, 𝑥, 𝑦, 𝑧 = True if 𝑥 = 𝑦 = 𝑧 = 0, False otherwise.

Sequence Alignment

(Edit distance)

Word Alignment

How similar are two strings?

ocurrance

occurrence

20

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Cost = # of gaps + #mismatches.

Applications.

• Basis for Unix diff and Word correct in editors.

• Speech recognition.

• Computational biology.

21

Cost: 3

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-

How to formalize the question.

Sequence Alignment

Given two strings 𝑥1, … , 𝑥𝑚 and 𝑦1, … , 𝑦𝑛 find an alignment
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥𝑖1 , 𝑦𝑗1), 𝑥𝑖2 , 𝑦𝑗2 , … such

that 𝑖1 < 𝑖2 < ⋯ and 𝑗1 < 𝑗2 < ⋯

Example: CTACCG vs. TACATG.
Sol: We aligned
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3.

22

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

Case 1: OPT matches 𝑥𝑖 , 𝑦𝑗
• Then, pay mis-match cost if 𝑥𝑖 ≠ 𝑦𝑗 + min cost of aligning

𝑥1, … , 𝑥𝑖−1 and 𝑦1, … , 𝑦𝑗−1 i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥𝑖 unmatched

• Then, pay gap cost for 𝑥𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦𝑗 unmatched

• Then, pay gap cost for 𝑦𝑗 + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

23

Bottom-up DP

24

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

return M[m, n]

}

Analysis: Θ(𝑚𝑛) time and space.

Computational biology: m = n = 1,000,000. 1000 billions ops OK,

but 1TB array?

Induction

What is the order of induction? (i.e. why there is no loop?)

We can do induction on 𝑖 + 𝑗.
(Alternatively, we can induct on the “step” of the algorithm)

25

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

Optimizing Memory

We just need to use the last (row) of computed values.

26

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

return M[m, n]

}
Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]

DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row

• Fill out the new values in a New array

• Copy new to old at the end of the loop

27

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

for i = 0 to m

O[i] = i

for i = 1 to m

N[0]=i

for j = 1 to n

N[j] = min((xi=yj ? 0:1) + O[j-1],

1 + O[j],

1 + N[j-1])

for j = 1 to n

O[j]=N[j]

return N[n]

}

M[i-1, j]

M[i, j-1]

M[i-1, j-1]

Shortest Path

28

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

Edit distance is the distance between (0,0) and (𝑚, 𝑛) of the

following graph.

• All horizontal edges has cost 1.

• All vertical edges has cost 1.
• The cost of edges from (𝑖 − 1, 𝑗 − 1) to (𝑖, 𝑗) is 1𝑥𝑖≠𝑦𝑗

The graph is a DAG.

Question:

How to recover the alignment

(or how to find the shortest path)

without using 𝑚𝑛 space?

How to recover the alignment?

29

Idea 1: Suffices to find the point a shortest path pass on the

middle row.

Why?

Divide and Conquer!

Idea 2: 𝑑 0,0 →(𝑚,𝑛) = min𝑗 𝑑 0,0 →(𝑚/2,𝑗) + 𝑑 𝑚/2,𝑗 →(𝑚,𝑛)

(0,0)

(m,n)

m/2 (m/2,j)

Find(i1,j1,i2,j2) { // Due to spacing, ignored boundary cases

Let 𝒌 = (𝒊𝟏 + 𝒊𝟐)/𝟐

Compute 𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) for all 𝒋 via Sequence-Alignment.

Compute 𝒅 𝒌,𝒋 →(𝒊𝟐,𝒋𝟐) for all 𝒋 via similar algo run backward.

Let 𝒋 = argmin𝑗𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) + 𝒅 𝒌,𝒋𝟐 →(𝒊𝟐,𝒋𝟐)

𝒑𝟏 = Find(i1,j1,k,j)

𝒑𝟐 = Find(k,j,i2,j2)

return 𝒑𝟏, 𝒑𝟐
}

Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.

By the way, edit distance

• can be computed in 𝑂(𝑠 × min 𝑚, 𝑛) if edit distance ≤ 𝑠

• can be computed in 𝑂(
𝑛2

log2 𝑛
) (1980).

• can be approximated by log factor in 𝑂(𝑛1+) (~2010).

• cannot be solved in 𝑂(𝑛2−𝛿) exactly (2015).

• can be approximated by O(1) factor in 𝑂(𝑛2−2/7) (~2018).

• can be approximated by O(1) factor in 𝑂(𝑛1+𝜖) (~2020).

30

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:

- It has the Hamiltonian Path as a

special case

32

2 3

6 5 4

7 1

DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in

defining the ordering

We saw that every DAG has a topological sorting

So, let’s use that as an ordering.

33

2 3

6 5 4

7 1

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the

vertices such that (𝑖, 𝑗) is a

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

Suppose OPT(j) is 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 , 𝑖𝑘 , 𝑗 , then

Obs 1: 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑗.

Obs 2: 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 is the longest path ending

at 𝑖𝑘 .
𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇 𝑖𝑘 .

34

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

𝑂𝑃𝑇 𝑗 = ൝
0
1 + max

𝑖: 𝑖,𝑗 an edge
𝑂𝑃𝑇(𝑖)

35

If 𝑗 is a source

o.w.

Outputting the Longest Path

36

Let G be a DAG given with a topological sorting: For all edges

(𝒊, 𝒋) we have i<j.

Initialize Parent[j]=-1 for all j.

Compute-OPT(j){

if (in-degree(j)==0)

return 0

if (M[j]==empty)

M[j]=0;

for all edges (i,j)

if (M[j] < 1+Compute-OPT(i))

M[j]=1+Compute-OPT(i)

Parent[j]=i

return M[j]

}

Let M[k] be the maximum of M[1],…,M[n]

While (Parent[k]!=-1)

Print k

k=Parent[k]

Record the entry that

we used to compute OPT(j)

