
CSE 421

Dynamic Programming

RNA, Sequence Alignment

Yin Tat Lee

1

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Cost = # of gaps + #mismatches.

Applications.

• Basis for Unix diff and Word correct in editors.

• Speech recognition.

• Computational biology.

2

Cost: 3

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-

DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

Case 1: OPT matches 𝑥𝑖 , 𝑦𝑗
• Then, pay mis-match cost if 𝑥𝑖 ≠ 𝑦𝑗 + min cost of aligning

𝑥1, … , 𝑥𝑖−1 and 𝑦1, … , 𝑦𝑗−1 i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥𝑖 unmatched

• Then, pay gap cost for 𝑥𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦𝑗 unmatched

• Then, pay gap cost for 𝑦𝑗 + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

3

Bottom-up DP

4

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

return M[m, n]

}

Analysis: Θ(𝑚𝑛) time and space.

Computational biology: m = n = 1,000,000. 1000 billions ops OK,

but 1TB array?

Shortest Path

5

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

Edit distance is the distance between (0,0) and (𝑚, 𝑛) of the

following graph.

• All horizontal edges has cost 1.

• All vertical edges has cost 1.
• The cost of edges from (𝑖 − 1, 𝑗 − 1) to (𝑖, 𝑗) is 1𝑥𝑖≠𝑦𝑗

The graph is a DAG.

Question:

How to recover the alignment

(or how to find the shortest path)

without using 𝑚𝑛 space?

How to recover the alignment?

6

Idea 1: Suffices to find the point a shortest path pass on the

middle row.

Why?

Divide and Conquer!

Idea 2: 𝑑 0,0 →(𝑚,𝑛) = min
𝑗

𝑑 0,0 →(𝑚/2,𝑗) + 𝑑 𝑚/2,𝑗 →(𝑚,𝑛)
(0,0)

(m,n)

m/2 (m/2,j)

Find(i1,j1,i2,j2) { // Due to spacing, ignored boundary cases

Let 𝒌 = (𝒊𝟏 + 𝒊𝟐)/𝟐

Compute 𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) via Dijkstra at (i1,j1).

Compute 𝒅 𝒌,𝒋 →(𝒊𝟐,𝒋𝟐) via Dijkstra at (i2,j2) on reversed graph.

Let 𝒌 = argmin𝒌𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) + 𝒅 𝒌,𝒋𝟐 →(𝒊𝟐,𝒋𝟐)

𝒑𝟏 = Find(i1,j1,k,j)

𝒑𝟐 = Find(k,j,i2,j2)

return 𝒑𝟏, 𝒑𝟐
}

Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.

By the way, edit distance

• can be computed in 𝑂(𝑠 × min 𝑚, 𝑛) if edit distance ≤ 𝑠

• can be computed in 𝑂(
𝑛2

log2 𝑛
) (1980).

• can be approximated by log factor in 𝑂(𝑛1+) (~2010).

• cannot be solved in 𝑂(𝑛2−𝛿) exactly (2015).

• can be approximated by O(1) factor in 𝑂(𝑛2−2/7) (~2018).

• can be approximated by O(1) factor in 𝑂(𝑛1+𝜖) (~2020).

7

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:

- It has the Hamiltonian Path as a

special case

9

2 3

6 5 4

7 1

DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in

defining the ordering

We saw that every DAG has a topological sorting

So, let’s use that as an ordering.

10

2 3

6 5 4

7 1

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the

vertices such that (𝑖, 𝑗) is a

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

Suppose OPT(j) is 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 , 𝑖𝑘 , 𝑗 , then

Obs 1: 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑗.

Obs 2: 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 is the longest path ending

at 𝑖𝑘 .
𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇 𝑖𝑘 .

11

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

𝑂𝑃𝑇 𝑗 = ൝
0
1 + max

𝑖: 𝑖,𝑗 an edge
𝑂𝑃𝑇(𝑖)

12

If 𝑗 is a source

o.w.

Outputting the Longest Path

13

Let G be a DAG given with a topological sorting:

For all edges (𝒊, 𝒋) we have i < j.

Initialize Parent[j]=-1 for all j.

Compute-OPT(j){

if (in-degree(j) == 0)

return 0

if (M[j] == empty)

M[j] = 0;

for all edges (i,j)

if (M[j] < 1+Compute-OPT(i))

M[j] = 1 + Compute-OPT(i)

Parent[j] = i

return M[j]

}

Let k be the maximizer of Compute-OPT(1),…,Compute-OPT(n)

While (Parent[k]!=-1)

Print k

k = Parent[k]

Record the entry that

we used to compute OPT(j)

Exercise:

Longest Increasing Subsequence

Longest Increasing Subsequence

Given a sequence of numbers

Find the longest increasing subsequence in 𝑂(𝑛2) time

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

15

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

16

DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence

𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 , 𝑥𝑗

Then, 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 is the longest increasing subsequence

ending at 𝑥𝑖𝑘 , i.e., 𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇(𝑖𝑘)

𝑂𝑃𝑇 𝑗 = ቐ
1
1 + max

𝑖:𝑥𝑖<𝑥𝑗
𝑂𝑃𝑇(𝑖)

Alternative Soln: This is a special case of Longest path in a DAG:

Construct a graph 1,…n where (𝑖, 𝑗) is an edge if 𝑖 < 𝑗 and 𝑥𝑖 < 𝑥𝑗 .
17

If 𝑥𝑗 < 𝑥𝑖 for all 𝑖 < 𝑗

o.w.

How to make it faster?

Data structure for LIS

We need a data structure with following operations:

• Initialize(): Set 𝑥1, 𝑥2, ⋯ 𝑥𝑛 to 0 in 𝑂(𝑛) time.

• Set(j,v): Set 𝑥𝑗 to 𝑣 in 𝑂(log 𝑛) time.

• Max(a,b): Output max𝑎≤𝑗≤𝑏 𝑥𝑗 in 𝑂(log 𝑛) time.

18

Shortest Paths with Negative Edge

Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex

𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

20

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Why distance can be negative?

Think distance as cost instead.

Impossibility on Graphs with Neg Cycles

Condition: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the

cycle again and again.

So, suppose G does not have a negative cycle.

21

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.

22

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at

most 𝑖 − 1 edges. So,

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣

23

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

𝑢: 𝑢,𝑣 an edge
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

24

Bellman Ford Algorithm

25

for v=1 to n

if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

for v=1 to n

M[v,i]=M[v,i-1]

for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n]

Exercise:

Minimum Vertex Cover for Tree

Minimum Vertex Cover for Tree

Given an undirected tree 𝑇 = (𝑉, 𝐸).

We call 𝑆 ⊂ 𝑉 is a vertex cover if every edge touches some

vertex in 𝑆.

Give a linear time algorithm to find the minimum vertex cover of

tree.

Answer:

Let 𝐹(𝑣) be the size of minimum vertex cover of the subtree at 𝑣.

Then

𝐹 𝑣 = min(#𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑣 + σ𝑔: 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑣𝐹 𝑔 , 1 + σ𝑐: 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑣𝐹 𝑐)

27

