CSE 421

Dynamic Programming
 RNA, Sequence Alignment

Yin Tat Lee

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] Cost = \# of gaps + \#mismatches.

Applications.

- Basis for Unix diff and Word correct in editors.
- Speech recognition.
- Computational biology.

| C | T | G | A | C | C | T | A | C | C | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | C | T | G | A | C | T | A | C | A | T |

Cost: 5

Cost: 3

DP for Sequence Alignment

Let $O P T(i, j)$ be min cost of aligning x_{1}, \ldots, x_{i} and y_{1}, \ldots, y_{j}

Case 1: OPT matches x_{i}, y_{j}

- Then, pay mis-match cost if $x_{i} \neq y_{j}+$ min cost of aligning x_{1}, \ldots, x_{i-1} and y_{1}, \ldots, y_{j-1} i.e., $\operatorname{OPT}(i-1, j-1)$

Case 2: OPT leaves x_{i} unmatched

- Then, pay gap cost for $x_{i}+O P T(i-1, j)$

Case 3: OPT leaves y_{j} unmatched

- Then, pay gap cost for $y_{j}+O P T(i, j-1)$

Bottom-up DP

```
Sequence-Alignment(m, n, x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{\prime})
    for i = 0 to m
        M[0, i] = i
    for j = 0 to n
        M[j, 0] = j
    for i = 1 to m
        for j = 1 to n
        M[i, j] = min( ( }\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{
                        1 + M[i-1, j],
                                1 + M[i, j-1])
    return M[m, n]
}
```

Analysis: $\Theta(m n)$ time and space.
Computational biology: $m=n=1,000,000.1000$ billions ops OK, but 1TB array?

$$
M[i, j]=\min \left(\quad\left(x_{i}=y_{j} ? 0: 1\right)+M[i-1, j-1]\right.
$$

Shortest Path $\quad \begin{aligned} & 1+M[i-1, j] \text {, } \\ & 1+M[i, j-1])\end{aligned}$

Edit distance is the distance between $(0,0)$ and (m, n) of the following graph.

- All horizontal edges has cost 1 .
- All vertical edges has cost 1 .
- The cost of edges from $(i-1, j-1)$ to (i, j) is $1_{x_{i} \neq y_{j}}$

The graph is a DAG.
Question: How to recover the alignment (or how to find the shortest path) without using $m n$ space?

Figure 6.17 A graph-based picture of sequence alignment.

How to recover the alignment?

Idea 1: Suffices to find the point a shortest path pass on the middle row.

Why?

Divide and Conquer!

Idea 2: $d_{(0,0) \rightarrow(m, n)}=\min _{j} d_{(0,0) \rightarrow(m / 2, j)}\left(0_{+} 0 d_{(m / 2, j) \rightarrow(m, n)}\right.$

```
Find \(\left(i_{1}, j_{1}, i_{2}, j_{2}\right)\) \{ // Due to spacing, ignored boundary cases
    Let \(k=\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor\)
    Compute \(d_{\left(i_{1}, j_{1}\right) \rightarrow\left(k, j_{2}\right)}\) via Dijkstra at \(\left(i_{1}, j_{1}\right)\).
    Compute \(d_{(k, j) \rightarrow\left(i_{2}, j_{2}\right)}\) via Dijkstra at \(\left(i_{2}, j_{2}\right)\) on reversed graph.
    Let \(k=\operatorname{argmin}_{k} d_{\left(i_{1}, j_{1}\right) \rightarrow\left(k, j_{2}\right)}+\boldsymbol{d}_{\left(k, j_{2}\right) \rightarrow\left(i_{2}, j_{2}\right)}\)
    \(p_{1}=\operatorname{Find}\left(i_{1}, j_{1}, k, j\right)\)
    \(p_{2}=\operatorname{Find}\left(\mathrm{k}, \mathrm{j}, \mathrm{i}_{2}, \mathrm{j}_{2}\right)\)
    return \(\boldsymbol{p}_{1}, \boldsymbol{p}_{\mathbf{2}}\)
\}
```


Lesson

Advantage of a bottom-up DP:
It is much easier to optimize the space.

By the way, edit distance

- can be computed in $O(s \times \min (m, n))$ if edit distance $\leq s$
- can be computed in $O\left(\frac{n^{2}}{\log ^{2} n}\right)(1980)$.
- can be approximated by log factor in $O\left(n^{1+\varepsilon}\right)(\sim 2010)$.
- cannot be solved in $O\left(n^{2-\delta}\right)$ exactly (2015).
- can be approximated by $\mathrm{O}(1)$ factor in $O\left(n^{2-2 / 7}\right)(\sim 2018)$.
- can be approximated by $O(1)$ factor in $O\left(n^{1+\epsilon}\right)(\sim 2020)$.

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general directed graphs:

- It has the Hamiltonian Path as a special case

DP for Longest Path in a DAG

Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in defining the ordering

We saw that every DAG has a topological sorting
So, let's use that as an ordering.

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i, j) is a directed edge only if $i<j$.

Let $O P T(j)=$ length of the longest path ending at j Suppose OPT(j) is $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k-1}, i_{k}\right),\left(i_{k}, j\right)$, then Obs 1: $i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq j$.
Obs 2: $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k-1}, i_{k}\right)$ is the longest path ending at i_{k}.

$$
O P T(j)=1+O P T\left(i_{k}\right) .
$$

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i, j) is a directed edge only if $i<j$.

Let $O P T(j)=$ length of the longest path ending at j

$$
O P T(j)= \begin{cases}0 & \text { If } j \text { is a source } \\ 1+\max _{i:(i, j) \text { an edge }} O P T(i) & \text { o.w. }\end{cases}
$$

Outputting the Longest Path

```
Let G be a DAG given with a topological sorting:
    For all edges (i,j) we have i < j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j){
    if (in-degree(j) == 0)
        return 0
    if (M[j] == empty)
        M[j] = 0;
        for all edges (i,j)
            if (M[j] < 1+Compute-OPT(i))
            M[j] = 1 + Compute-OPT(i)
            Parent[j] = i
                            Record the entry that
    return M[j]
                                    we used to compute OPT(j)
}
Let k be the maximizer of Compute-OPT(1),...,Compute-OPT(n)
While (Parent[k]!=-1)
    Print k
    k = Parent[k]
```


Exercise: Longest Increasing Subsequence

Longest Increasing Subsequence

Given a sequence of numbers
Find the longest increasing subsequence in $O\left(n^{2}\right)$ time
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$
$41,22,9,15,23,39,21,56,24,34,59,23,60,39,87,23,90$

Find the longest increasing subsequence in $O\left(n^{\wedge} 2\right)$ time.

I can do it in $O(n \log n)$

Total Results: 0

DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence

$$
x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}, x_{j}
$$

Then, $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ is the longest increasing subsequence ending at $x_{i_{k}}$, i.e., $O P T(j)=1+O P T\left(i_{k}\right)$

How to make it faster?

$$
O P T(j)= \begin{cases}1 & \text { If } x_{j}<x_{i} \text { for all } i<j \\ 1+\max _{i: x_{i}<x_{j}} O P T(i) & \text { o.w. }\end{cases}
$$

Alternative Soln: This is a special case of Longest path in a DAG: Construct a graph $1, \ldots \mathrm{n}$ where (i, j) is an edge if $i<j$ and $x_{i}<x_{j}$.

Data structurefort IS opt $\sin = \begin{cases}1 & \text { If } x_{j}<x_{i} \text { for all } i<j \\ 1+\max _{i: x_{i}<x_{j}} O P T(i) & \text { o.w. }\end{cases}$

We need a data structure with following operations:

- Initialize(): Set $x_{1}, x_{2}, \cdots x_{n}$ to 0 in $O(n)$ time.
- $\operatorname{Set}(\mathrm{j}, \mathrm{v})$: Set x_{j} to v in $O(\log n)$ time.
- $\operatorname{Max}(\mathrm{a}, \mathrm{b})$: Output $\max _{a \leq j \leq b} x_{j}$ in $O(\log n)$ time.

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G=(V, E)$ and a source vertex s, where the weight of edge (u, v) is $c_{u, v}$ (that can be negative)
Goal: Find the shortest path from s to all vertices of G.
Recall that Dikjstra's Algorithm fails when weights are negative

Why distance can be negative?
Think distance as cost instead.

Impossibility on Graphs with Neg Cycles

Condition: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path (First Attempt)

Def: Let $O P T(v)$ be the length of the shortest $s-v$ path

$$
O P T(v)=\left\{\begin{array}{lr}
0 & \text { if } v=s \\
u:(u, v) \text { an edge } & O P T(u)+c_{u, v}
\end{array}\right.
$$

The formula is correct. But it is not clear how to compute it.

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
Let us characterize $\operatorname{OPT}(v, i)$.

Case 1: $\operatorname{OPT}(v, i)$ path has less than i edges.

- Then, $\operatorname{OPT}(v, i)=O P T(v, i-1)$.

Case 2: $\operatorname{OPT}(v, i)$ path has exactly i edges.

- Let $s, v_{1}, v_{2}, \ldots, v_{i-1}, v$ be the $O P T(v, i)$ path with i edges.
- Then, $s, v_{1}, \ldots, v_{i-1}$ must be the shortest $s-v_{i-1}$ path with at most i - 1 edges. So,

$$
O P T(v, i)=O P T\left(v_{i-1}, i-1\right)+c_{v_{i-1}, v}
$$

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
$\operatorname{OPT}(v, i)=\left\{\begin{array}{lr}0 & \text { if } v=s \\ \infty & \text { if } v \neq s, i=0 \\ \min (O P T(v, i-1), & \left.\min _{u:(u, v) \text { an edge }} O P T(u, i-1)+c_{u, v}\right)\end{array}\right.$

So, for every $\mathrm{v}, \operatorname{OPT}(v, ?)$ is the shortest path from s to v .
But how long do we have to run?
Since G has no negative cycle, it has at most $n-1$ edges. So, $\operatorname{OPT}(v, n-1)$ is the answer.

Bellman Ford Algorithm

```
for v=1 to n
    if v}=\boldsymbol{S}\mathrm{ then
        M[v,0]=\infty
M[s,0]=0.
for i=1 to n-1
    for v=1 to n
        M[v,i]=M[v,i-1]
        for every edge (u,v)
            M[v,i]=min(M[v,i], M[u,i-1]+Cu,v)
```

Running Time: $O(\mathrm{~nm})$
Can we test if G has negative cycles?
Yes, run for $\mathrm{i}=1 \ldots 3 \mathrm{n}$ and see if the $\mathrm{M}[\mathrm{v}, \mathrm{n}-1]$ is different from $\mathrm{M}[v, 3 n]$

Exercise:

Minimum Vertex Cover for Tree

Minimum Vertex Cover for Tree

Given an undirected tree $T=(V, E)$.

We call $S \subset V$ is a vertex cover if every edge touches some vertex in S.

Give a linear time algorithm to find the minimum vertex cover of tree.

Answer:

Let $F(v)$ be the size of minimum vertex cover of the subtree at v. Then

$$
F(v)=\min \left(\# \text { children }(v)+\sum_{g: \text { grandchild of } v} F(g), 1+\sum_{c: \text { child of } v} F(c)\right)
$$

