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Edit Distance

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

Cost = # of gaps + #mismatches.

Applications.

• Basis for Unix diff and Word correct in editors.

• Speech recognition.

• Computational biology.
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DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗

Case 1: OPT matches 𝑥𝑖 , 𝑦𝑗
• Then, pay mis-match cost if 𝑥𝑖 ≠ 𝑦𝑗 + min cost of aligning 

𝑥1, … , 𝑥𝑖−1 and 𝑦1, … , 𝑦𝑗−1 i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥𝑖 unmatched

• Then, pay gap cost for 𝑥𝑖 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦𝑗 unmatched

• Then, pay gap cost for 𝑦𝑗 + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)
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Bottom-up DP
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

return M[m, n]

}

Analysis: Θ(𝑚𝑛) time and space.

Computational biology:  m = n = 1,000,000. 1000 billions ops OK, 

but 1TB array?



Shortest Path
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M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],

1 + M[i-1, j],

1 + M[i, j-1])

Edit distance is the distance between (0,0) and (𝑚, 𝑛) of the 

following graph.

• All horizontal edges has cost 1.

• All vertical edges has cost 1.
• The cost of edges from (𝑖 − 1, 𝑗 − 1) to (𝑖, 𝑗) is 1𝑥𝑖≠𝑦𝑗

The graph is a DAG.

Question: 

How to recover the alignment

(or how to find the shortest path)

without using 𝑚𝑛 space?



How to recover the alignment?

6

Idea 1: Suffices to find the point a shortest path pass on the 

middle row.

Why?

Divide and Conquer!

Idea 2: 𝑑 0,0 →(𝑚,𝑛) = min
𝑗

𝑑 0,0 →(𝑚/2,𝑗) + 𝑑 𝑚/2,𝑗 →(𝑚,𝑛)
(0,0)

(m,n)

m/2 (m/2,j)

Find(i1,j1,i2,j2) { // Due to spacing, ignored boundary cases

Let 𝒌 = (𝒊𝟏 + 𝒊𝟐)/𝟐

Compute 𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) via Dijkstra at (i1,j1).

Compute 𝒅 𝒌,𝒋 →(𝒊𝟐,𝒋𝟐) via Dijkstra at (i2,j2) on reversed graph.

Let 𝒌 = argmin𝒌𝒅 𝒊𝟏,𝒋𝟏 →(𝒌,𝒋𝟐) + 𝒅 𝒌,𝒋𝟐 →(𝒊𝟐,𝒋𝟐)

𝒑𝟏 = Find(i1,j1,k,j)

𝒑𝟐 = Find(k,j,i2,j2)

return 𝒑𝟏, 𝒑𝟐
}



Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.

By the way, edit distance 

• can be computed in 𝑂(𝑠 × min 𝑚, 𝑛 ) if edit distance ≤ 𝑠

• can be computed in 𝑂(
𝑛2

log2 𝑛
) (1980).

• can be approximated by log factor in 𝑂(𝑛1+ ) (~2010).

• cannot be solved in 𝑂(𝑛2−𝛿) exactly (2015).

• can be approximated by O(1) factor in 𝑂(𝑛2−2/7) (~2018).

• can be approximated by O(1) factor in 𝑂(𝑛1+𝜖) (~2020).
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Longest Path in a DAG



Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:

- It has the Hamiltonian Path as a 

special case
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DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in 

defining the ordering

We saw that every DAG has a topological sorting

So, let’s use that as an ordering.
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DP for Longest Path in a DAG

Suppose we have labelled the 

vertices such that (𝑖, 𝑗) is a 

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

Suppose OPT(j) is 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 , 𝑖𝑘 , 𝑗 , then

Obs 1: 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑗.

Obs 2: 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , 𝑖𝑘−1, 𝑖𝑘 is the longest path ending 

at 𝑖𝑘 .
𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇 𝑖𝑘 .
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DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a 

directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

𝑂𝑃𝑇 𝑗 = ൝
0
1 + max

𝑖: 𝑖,𝑗 an edge
𝑂𝑃𝑇(𝑖)
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If 𝑗 is a source

o.w.



Outputting the Longest Path
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Let G be a DAG given with a topological sorting: 

For all edges (𝒊, 𝒋) we have i < j.

Initialize Parent[j]=-1 for all j.

Compute-OPT(j){

if (in-degree(j) == 0)

return 0

if (M[j] == empty)

M[j] = 0;

for all edges (i,j)

if (M[j] < 1+Compute-OPT(i))

M[j] = 1 + Compute-OPT(i)

Parent[j] = i

return M[j]

}

Let k be the maximizer of Compute-OPT(1),…,Compute-OPT(n)

While (Parent[k]!=-1)

Print k

k = Parent[k]

Record the entry that 

we used to compute OPT(j)



Exercise:

Longest Increasing Subsequence



Longest Increasing Subsequence

Given a sequence of numbers 

Find the longest increasing subsequence in 𝑂(𝑛2) time

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
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41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
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DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence

𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 , 𝑥𝑗

Then, 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘 is the longest increasing subsequence 

ending at 𝑥𝑖𝑘 , i.e.,  𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇(𝑖𝑘)

𝑂𝑃𝑇 𝑗 = ቐ
1
1 + max

𝑖:𝑥𝑖<𝑥𝑗
𝑂𝑃𝑇(𝑖)

Alternative Soln: This is a special case of Longest path in a DAG: 

Construct a graph 1,…n where (𝑖, 𝑗) is an edge if 𝑖 < 𝑗 and 𝑥𝑖 < 𝑥𝑗 .
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If 𝑥𝑗 < 𝑥𝑖 for all 𝑖 < 𝑗

o.w.

How to make it faster?



Data structure for LIS

We need a data structure with following operations:

• Initialize(): Set 𝑥1, 𝑥2, ⋯ 𝑥𝑛 to 0 in 𝑂(𝑛) time.

• Set(j,v): Set 𝑥𝑗 to 𝑣 in 𝑂(log 𝑛) time.

• Max(a,b): Output max𝑎≤𝑗≤𝑏 𝑥𝑗 in 𝑂(log 𝑛) time.
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Shortest Paths with Negative Edge 

Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex 

𝑠, where the weight of edge (u,v) is 𝑐𝑢,𝑣 (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative
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Why distance can be negative?

Think distance as cost instead.



Impossibility on Graphs with Neg Cycles

Condition: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 

cycle again and again. 

So, suppose G does not have a negative cycle. 
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DP for Shortest Path (First Attempt)

Def: Let 𝑂𝑃𝑇(𝑣) be the length of the shortest 𝑠 - 𝑣 path

𝑂𝑃𝑇 𝑣 = ൝
0 if 𝑣 = 𝑠

min
𝑢: 𝑢,𝑣 an edge

𝑂𝑃𝑇 𝑢 + 𝑐𝑢,𝑣

The formula is correct. But it is not clear how to compute it.
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.

• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.

• Let 𝑠, 𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.

• Then, 𝑠, 𝑣1, … , 𝑣𝑖−1 must be the shortest 𝑠 - 𝑣𝑖−1 path with at 

most 𝑖 − 1 edges. So, 

𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣𝑖−1, 𝑖 − 1 + 𝑐𝑣𝑖−1,𝑣
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 

most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = ൞

0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

𝑢: 𝑢,𝑣 an edge
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐𝑢,𝑣)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,

𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n

if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1

for v=1 to n

M[v,i]=M[v,i-1]

for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 

Yes, run for i=1…3n and see if the M[v,n-1] is different from M[v,3n] 



Exercise:

Minimum Vertex Cover for Tree



Minimum Vertex Cover for Tree

Given an undirected tree 𝑇 = (𝑉, 𝐸).

We call 𝑆 ⊂ 𝑉 is a vertex cover if every edge touches some 

vertex in 𝑆.

Give a linear time algorithm to find the minimum vertex cover of 

tree.

Answer:

Let 𝐹(𝑣) be the size of minimum vertex cover of the subtree at 𝑣.

Then

𝐹 𝑣 = min(#𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑣 + σ𝑔: 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑣𝐹 𝑔 , 1 + σ𝑐: 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑣𝐹 𝑐 )
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