CSE 421

Dynamic Programming
RNA, Sequence Alignment

Yin Tat Lee

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
Cost = # of gaps + #mismatches.

Applications.

« Basis for Unix diff and Word correct in editors.
« Speech recognition.
« Computational biology.

B c - - c@- BcrteaccTtac@r
Al c | T|6| A RAREVINE A By ccTe6AacBTAacAT

Cost: 5 Cost: 3

DP for Sequence Alignment

Let OPT (i, j) be min cost of aligning x4, ..., x; and yy, ..., y;

Case 1: OPT matches x;, y;
 Then, pay mis-match cost if x; # y; + min cost of aligning
X1, ., Xi—g @nd yy, ..., y;—q L€, OPT({i—1,j —1)

Case 2: OPT leaves x; unmatched
« Then, pay gap cost for x; + OPT(i — 1, j)

Case 3: OPT leaves y; unmatched
 Then, pay gap cost for y; + OPT(i,j — 1)

Bottom-up DP

Sequence-Alignment (m, n, x;X,...X,, YViVo--.- -¥Y,) {

for i =0 tom
M[O, i] = 1i
for j =0 ton
M[j, 0] =3
for i =1 tom

for j =1 ton
M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, 3],
1 + M[1i, j-1])
return M[m, n]

Analysis: @(mn) time and space.
Computational biology: m =n = 1,000,000. 1000 billions ops OK,
but 1TB array?

M[i, j] = min((x;=y, ? 0:1) + M[i-1, j-1],
1 + M[i-1, j1,

Shortest Path 1+ M[i, 3-11)

Edit distance is the distance between (0,0) and (m, n) of the
following graph.
« All horizontal edges has cost 1.

« All vertical edges has cost 1.
 The cost of edges from (i —1,j — 1) to (i,j) IS Ly,

The graph is a DAG. x%%‘ 6

Question:
How to recover the alignment)
(or how to find the shortest path)

without using mn space”?
Vi Y2 V3 Va

Figure 6.17 A graph-based picture of sequence alignment.

5

How to recover the alignment?

ldea 1: Suffices to find the point a shortest path pass on the (m,n)

middle row.

m/2 (m/zi)///
Why?
Divide and Conquer! /

| . 0,0
|dea 2: d(0,0)—>(m,n) = mjln d(0,0)—>(m/2,j)(-+ &(m/Z,j)—)(m,n)

Find(i,,Jj,,i,,3,) { // Due to spacing, ignored boundary cases
Let k = [(i1 +i3)/2]
Compute d(;, j)-kj, Via Dijkstra at (i,,3],).
Compute dj)-(i,j,) via Dijkstra at (i,,j,) on reversed graph.
Let k =argmingd(, j)-(kjp) 1 & (kj)-(izja)
p1 = Find(i,,3,,k,J)
pz = Find(k,]j,1i,,3,)

return P1, D2

Lesson

Advantage of a bottom-up DP:
It is much easier to optimize the space.

By the way, edit distance
e can be computed in O(s X min(m, n)) if edit distance < s

TLZ

« can be computed in O() (1980).

log2 n
 can be approximated by log factor in 0 (n!*¢) (~2010).
- cannot be solved in 0(n?~%) exactly (2015).

« can be approximated by O(1) factor in 0(n?~2/7) (~2018).
« can be approximated by O(1) factor in 0(n'*¢) (~2020).

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:

- It has the Hamiltonian Pathasa (&
special case

DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in
defining the ordering

We saw that every DAG has a topological sorting
So, let's use that as an ordering.

10

DP for Longest Path in a DAG

Suppose we have labelled the
vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at j
Suppose OPT()) is (iy, i,), (iy,i3), ..., (ix—1,ix), (ix, j), then
Obsliiy <i, <+ <0 <J.

Obs 2: (iy, 1), (iy,i3), ..., (ix—1, ix) is the longest path ending
at iy,.
OPT(j) =1+ OPT(iy).

11

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at j

| 0 If j IS a source
OPT(j) =41+ max OPT(i) 0.W.

i:(i,j) an edge

12

Outputting the Longest Path

Let G be a DAG given with a topological sorting:
For all edges (i,j) we have i < j.

Initialize Parent[j]=-1 for all j.

Compute-OPT () {

if (in-degree(j) == 0)
return 0O

if (M[J] == empty)
M[j] = 0;

for all edges (1i,3)
if (M[j] < 1+Compute-OPT (1))
M[j] = 1 + Compute-OPT (1)
Parent[j] = i < Record the entry that

return M[j] we used to compute OPT())

}
Let k be the maximizer of Compute-OPT(1l),..,Compute-OPT (n)

While (Parentl[k]!=-1)
Print k
k = Parent[k]

13

Exercise:
Longest Increasing Subseguence

Longest Increasing Subseguence

Given a sequence of numbers
Find the longest increasing subsequence in 0(n?) time

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

!

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

15

-w- Find the longest increasing subsequence in

O(n"2) time.

I can do it in O(nlogn)

Total Results: 0

Powered hv ‘h Pall Fvarvwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

DP for LIS

Let OPT(j) be the longest increasing subsequence ending at |.

Observation: Suppose the OPT()) is the sequence
xil,xiz, ...,Xl'k,x]'

Then, x; , x;,, ..., x;, 1S the longest increasing subsequence
ending at x;,,i.e., OPT(j) =1+ OPT(iy)

[How to make it faster?]

1 If x; < x; foralli <
OPT(j) =41+ max OPT(i) 0.W.

i:xi<xj

Alternative Soln: This is a special case of Longest path in a DAG:

Construct a graph 1,...n where (i,j) is an edge if i <jand x; < x;. /

Data. StrU CtU re for L I S OPT(j) = {} + max OPT (i) g:\f <orali=]

We need a data structure with following operations:
« Initialize(): Set x, x5, - x,, to 0 In O(n) time.

« Set(],v): Set x; to v In O(logn) time.

* Max(a,b): Output max,<j<p x; IN O(logn) time.

(54

94

13 26 90 55 55 @ o

(4) (13) (10) (26) (%0) (78) G (5

94

18

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph ¢ = (V, E) and a source vertex
s, where the weight of edge (u,v) is ¢, ,, (that can be negative)

Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

AN ey
g i

Why distance can be negative?
Think distance as cost instead.

20

Impossibility on Graphs with Neg Cycles

Condition: No solution exists if G has a negative cycle.

This Is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

21

DP for Shortest Path (First Attempt)

Def: Let OPT (v) be the length of the shortest s - v path

0 ifv=s
OPT(v) = min OPT (u) + cyy

u:(u,v) an edge

The formula is correct. But it is not clear how to compute it.

22

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

Let us characterize OPT (v, i).

Case 1: OPT (v,i) path has less than i edges.
« Then, OPT(v,i) = OPT(v,i — 1).

Case 2: OPT (v,i) path has exactly i edges.
 Lets,vq,v,,...,v;_1, v be the OPT (v, i) path with i edges.

 Then, s,v4, ..., v;_1 Mmust be the shortest s - v;_; path with at
most i — 1 edges. So,
OPT(v,i) = OPT(vj_1,i — 1) + ¢, o

23

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

(0 ifv=s

OPT(v,i) ={ © ifv#s,i=0
min(OPT (v,i — 1), min OPT(u,i —1) +cyyp)
L u:(u,v) an edge ’

So, for every v, OPT(v,?) is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most n — 1 edges. So,
OPT(v,n — 1) is the answer.

24

Bellman Ford Algorithm

for v=1 to n *

Complexity Author

O(n") Shimbel (1955) [30]
O(Wn?m) Ford (1956) [11]

O(nm) Bellman (1958) [1], Moore (1959) [27]

O(nimlogW)

Gabow (1983) [9]

O(y/nmlog(nW))

Gabow and Tarjan (1989) |

]

O(y/nmlog(W))

Goldberg (1993) [12]

. * O(Wn*) Sankowski (2005) [27] Yuster and Zwick (2005) [35]
if v+ s then * [O log W) Cohen, Madry, Sankowski, Viadu (2016)
M [v - O] =00 Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the

best bound for some range of parameters).

M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min (M[v,i], M[u,i-1]+c, ,)

Running Time: O(nm)
Can we test if G has negative cycles?

Yes, run for i=1...3n and see if the M[v,n-1] is different from M[v,3n]

25

Exercise:
Minimum Vertex Cover for Tree

Minimum Vertex Cover for Tree

Given an undirected tree T = (V,E).

We call S ¢ V is a vertex cover if every edge touches some
vertex in S.

Give a linear time algorithm to find the minimum vertex cover of
tree.

Answer:
Let F(v) be the size of minimum vertex cover of the subtree at v.

Then
F(v) = min(#Children(v) + Zg: grandchild of v F(g) 1+ Zc: child of v F(C))

27

