
CSE 421

Dynamic Programming

Yin Tat Lee

1

Roadmap

This course has the following topics:

• Graphs (BFS, DFS)

• Greedy Methods

• Divide and Conquer

• Dynamic Programming

• Network Flow

• NP completeness

We start network flow on next lecture.

Next lecture is by Sally.

2

Techniques

Basic

Problems

Common Subproblems

• OPT(i) – opt solution using 𝑥1, ⋯ , 𝑥𝑖 (Longest path)

• OPT(i,j) – opt solution using 𝑥𝑖 , ⋯ , 𝑥𝑗 (RNA)

• OPT(i,j) – opt solution using 𝑥1, ⋯ , 𝑥𝑖 and 𝑦1, ⋯ , 𝑦𝑖 (Edit

distance)

• OPT(i,W) – opt solution using 𝑥1, ⋯ , 𝑥𝑖 with budget 𝑊
(Knapsack problem)

• OPT(i,t) – opt solution at vertex 𝑖 using 𝑡 step (negative-

weight shortest path)

Today’s Goal:

• Give some history of DP

• Give an example that OPT(i,t) with 𝑡 has no “meaning”.

3

Dynamic Programming

Copy from Bellman’s autobiography

I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An interesting question is, Where did the name,

dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named

Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word research. I’m not using the term lightly; I’m using it

precisely. His face would suffuse, he would turn red, and he would get violent if people used the term research in his presence. You can imagine how he felt,

then, about the term mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I

had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name,

could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided

therefore to use the word “programming”. I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying I thought, lets kill two

birds with one stone. Lets take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting

property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a

pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I

used it as an umbrella for my activities.

In short, his boss hates math.

He needs a cool term, which sounded less math.

Programming refers to a military schedule.

4

Richard

Bellman

Example 1:

Dynamic Decision Problem

(original problem for Dynamic

Programming)

Dynamic Decision Problem

Given a directed graph G with a starting vertex 𝑣0.

• each vertex represents some state

• each edge 𝑒 has some reward 𝑟𝑒 (can be negative)

We define the reward of a path 𝑝 = 𝑣0𝑣1𝑣2⋯ be

for some given discount factor 0 < 𝛾 < 1.

Goal: Find a path 𝑝 starts at 𝑣0 with maximum reward 𝑅(𝑝).

(This is a simplified version of Markov Decision process.)

6

Example

Start vertex is 1.

Question: What is the best path?

There are two natural choices:

1. Simply play video game every day (1,1,1,1,1,…)

YOLO!

2. Keep publishing (1,2,3,4,1,2,3,4,…)

Publish or Perish

So, which is the best path?

It depends on 𝛾. (Or, how many days you have left?)

7

1

2

3

4

Video game

R = +1

Example

Start vertex is 1.

Path 1: 1,1,1,⋯.

The reward is

We can view 𝛾 is the probability you die in each day.

1/(1 − 𝛾) is the life expectancy.

Hence, the reward per day is simply 1.

8

1

2

3

4

Video game

R = +1

Example

Start vertex is 1.

Path 2: 1,2,3,4,1,2,3,4,⋯

The reward is

The reward/day is

When 𝛾 ≈ 0, the reward/day is around −4. (worse than Path 1)

When 𝛾 ≈ 1, the reward/day is around 7/4. (better than Path 1)

9

1

2

3

4

Video game

R = +1

Dynamic Decision Problem

Given a directed graph G with a starting vertex 𝑣0.

• each vertex represents some state

• each edge 𝑒 has some reward 𝑟𝑒 (can be negative)

We define the reward of a path 𝑝 = 𝑣0𝑣1𝑣2⋯ be

for some given discount factor 0 < 𝛾 < 1.

Goal: Find a path 𝑝 starts at 𝑣0 with maximum reward 𝑅(𝑝).

Bellman shows how to solve it using “Dynamic Programming”.

Hints: Instead of finding the path, find the reward first!

10

Bellman Equation

Fix any vertex 𝑣0.

Let 𝑝 = 𝑣0𝑣1𝑣2⋯ be a path with maximum reward.

Let 𝑞 = 𝑣1𝑣2𝑣3⋯.

Note that

Hence, if 𝑝 maximizes reward at 𝑣0, 𝑞 maximizes reward at 𝑣1.

Let 𝑅(𝑣) be the maximum reward for path starting at 𝑣.

We have 𝑅 𝑣 = max
𝑢

[𝑟𝑣𝑢 + 𝛾 ⋅ 𝑅 𝑢]. (Bellman equation)

11
Like last lecture, unclear how to use.

Value Iteration

Bellman equation: 𝑅 𝑣 = max
𝑢

[𝑟𝑣𝑢 + 𝛾 ⋅ 𝑅 𝑢].

We define 𝑅 0 𝑣 = 0 for all 𝑢 and

𝑅(𝑡+1) 𝑣 = max
𝑢

[𝑟𝑣𝑢 + 𝛾 ⋅ 𝑅(𝑡) 𝑢] for all 𝑣.

(Unlike Bellman equation, this can be implemented.)

Lemma: Let 𝜖𝑡 = max
𝑢

|𝑅 𝑢 − 𝑅 𝑡 (𝑢) |. Then 𝜖𝑡+1 ≤ 𝛾 ⋅ 𝜖𝑡.

Proof:

12

Value Iteration

13

Input: accuracy target 𝜹
R[u,0]=0 for all u

𝑹𝒎𝒂𝒙 = maxe |re| / (1-𝜸)

T = 𝐥𝐨𝐠𝜸(
𝑹𝒎𝒂𝒙

𝜹
)

for t = 1,2,...,T

for v = 1 to n

R[v,t] = max
𝑢

(𝑟𝑣𝑢 + 𝛾 ⋅ 𝑅 𝑢, 𝑡 − 1)

𝑅𝑚𝑎𝑥 is some upper bound of 𝑅.

Using 𝜖𝑡+1 ≤ 𝛾 ⋅ 𝜖𝑡 and 𝜖0 ≤ 𝑅𝑚𝑎𝑥, we have 𝜖𝑇 ≤ 𝛿.

Running Time: 𝑂 𝑚𝑇 which is around 𝑚 log(
1

𝛿
)/(1 − 𝛾).

So, the runtime is fast when the discount factor not close to 1.

Open Question: How fast you can solve it when 𝛾 very close to 1?

Example 2:

Traveling Salesperson Problem

(DP can be used for hard problems)

Traveling Salesperson Problem

Given: 𝑛 cities and the pairwise distance 𝑑𝑖𝑗

Goal: Find shortest path that visit every city exactly once time

(For simplicity, not required to return to starting point)

Brute force: 𝑛!~2𝑂(𝑛 log 𝑛) time

Subproblem: 𝑇(𝑣, 𝑆) – length of shortest cycle that visit all cities

in 𝑆 exactly once and ends at 𝑣.

Observation: 𝑇 𝑣, 𝑆 = min
𝑢∈𝑆−𝑣

𝑇 𝑢, 𝑆 − 𝑣 + 𝑑𝑢𝑣

15

They made a breakthrough in

2020 on getting best

approximation of metric TSP

Traveling Salesperson Problem

Brute force: 𝑛!~2𝑂(𝑛 log 𝑛) time

Subproblem: 𝑇(𝑣, 𝑆) – length of shortest cycle that visit all cities

in 𝑆 exactly once and ends at 𝑣.

Algorithm:

16

Set T(v,{v}) = 0 for all v

for k = 2,...,n

for all sets S of size k

for all v in S

T(v,S) = min
𝑢∈𝑆−𝑣

𝑇 𝑢, 𝑆 − 𝑣 + 𝑑𝑢𝑣

Runtime: 𝑂(𝑛2𝑛)

Exercise:

Minimum Vertex Cover for Tree

Minimum Vertex Cover for Tree

Given an undirected tree 𝑇 = (𝑉, 𝐸).

We call 𝑆 ⊂ 𝑉 is a vertex cover if every edge touches some

vertex in 𝑆.

Give a linear time algorithm to find the minimum vertex cover of

tree.

18

Minimum Vertex Cover for Tree

Answer:

Let 𝑉(𝑟) be the size of minimum vertex cover of the subtree at 𝑟.

Case 1: The optimal cover does not contain 𝑟.

Then, it must contain children(r).

Hence, 𝑉 𝑟 = #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑟 + σ𝑔: 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑟 𝑉 𝑔

Case 2: The optimal cover does contain 𝑟.

Then, 𝑉 𝑟 = 1 + σ𝑐: 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑟 𝑉 𝑐

Combining both cases, we have

𝑉 𝑟 = min(#𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑟 + σ𝑔: 𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑟 𝑉 𝑔 , 1 + σ𝑐: 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑟 𝑉 𝑐)

19

Exercise:

Chain Matrix Multiplication

Chain Matrix Multiplication

Given: 𝑛 matrices 𝑀1, 𝑀2, ⋯ ,𝑀𝑛

Goal: Find the cheapest order to compute 𝑀1𝑀2⋯𝑀𝑛

Example: To compute 𝑉𝑊𝑋𝑍𝑌, we could multiply

𝑉(𝑊𝑋 𝑌𝑍) or 𝑉 𝑊 𝑋𝑌 𝑍

Assumption: Multiply 𝑎 × 𝑏 matrix with 𝑏 × 𝑐 matrix takes 𝑎𝑏𝑐 time.

Subproblems: 𝐶(𝑖, 𝑗) – time to compute 𝑀𝑖𝑀𝑖+1⋯𝑀𝑗

21

Chain Matrix Multiplication

Assumption: Multiply 𝑎 × 𝑏 matrix with 𝑏 × 𝑐 matrix takes 𝑎𝑏𝑐 time.

Subproblems: 𝐶(𝑖, 𝑗) – time to compute 𝑀𝑖𝑀𝑖+1⋯𝑀𝑗

Observation: If the last multiplication in optimal solution is

(𝑀𝑖⋯𝑀𝑘)(𝑀𝑘+1⋯𝑀𝑗)

Then, 𝐶 𝑖, 𝑗 = 𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑚𝑖𝑚𝑘+1𝑚𝑗

Algorithm:

22

Set C(i,i) = 0 for all I = 1,2,...,n

for s = 1,...,n-1

for i = 1,…,n-1

C(i,i+s) = min
𝑖<𝑘<𝑖+𝑠

𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑖 + 𝑠 + 𝑚𝑖𝑚𝑘+1𝑚𝑖+𝑠

