Lecture 18: max flow

j |
yoop PP
ppOo 0 °
:PF‘PDJ
4
e

Problem setup

Input:

» directed graph G = (V, E) with special vertices s
(source) and 7 (sink)

» edge capacitiesc =(c,: e € E) > ()

Problem setup

Input:

» directed graph G = (V, E) with special vertices s
(source) and 7 (sink)

» edge capacitiesc =(c,: e € E) > ()

Output:
» flowf = (f,:e € L), i.e. satisfies

» 0 <L f, < c, foreach edge e
o f(v) = f°"(v) for each vertex v # s, t

e maximize the value of the flow, I.e.

v(f) = fs) = f"(1)

Brief history of max flow

year authors run-time bound m edges
ot n vertices
1954 Harris and Ross first mtroduc_:ed to model .
Soviet railway flow max edge capacity
U
1955 Ford and Fulkerson O(hmU)
1970 Dinitz, Edmond and Karp O(nm2)
1983 Sleater and Tarjan O(nm log n)
1986 Goldberg and Tarjan O(nm log (n2/m))
1987 Ahuja and Orlin O(hm + n2 log U)
O(m>”?log(n?/m)log U
1997 Goldberg and Rao (-3 &) flog U)
On“"mlog(n“/m)log U)
2012 Orlin, King et al. O(nm)
2014 Lee and Sidford O(m\/n 10g%D U 1og?" n)

~y
D - Zotormes o Q@ d 2 - d6 e

Choose sidebar display

Minimum Cost Flows, MDPs, and #;-Regression
in Nearly Linear Time for Dense Instances

Jan van den Brand* Yin Tat Leef Yang P. Liut Thatchaphol Saranurak®
Aaron Sidford¥ Zhao Song! Di Wang**

August 24, 2021

Abstract

In this paper we provide new randomized algorithms with improved runtimes for solving
linear programs with two-sided constraints. In the special case of the minimum cost flow
problem on n-vertex m-edge graphs with integer polynomially-bounded costs and capacities
we obtain a randomized method which solves the problem in O(m+n'®) time. This improves

upon the previous best runtime of 5(m\/ﬁ) (LS14] and, in the special case of unit-capacity
maximum flow, improves upon the previous best runtimes of m*/*+°(}) [L§20a, Kat20] and

O(m./n) [LS14] for sufficiently dense graphs.

S] 22 Aug 2021

ldeas for an approach?

Greedy pitfalls

Residual graph

. denote by Gf, depends on G and f

 same set of vertices

- for every edge ¢ = (u, v) in G with flow f,, add
» edge (u, v) with capacity ¢, — f,, if ¢, > |,
» edge (v, u) with capacity f, if f, > 0

Residual graph

. denote by Gf, depends on G and f

e same set of vertices

- for every edge ¢ = (u, v) in G with flow f,, add

» edge (u, v) with capacity ¢, — f,, if ¢, > |,
» edge (v, u) with capacity f, if f, > 0

Augmenting path

Definition:

An augmenting path is an s — ¢ path in Gy

Augmenting path

Definition:

An augmenting path is an s — ¢ path in Gy

We can send flow in G along the augmenting path. This gives an updated flow.

Repeat this process? Until when?

Ford-Fulkerson algorithm

start with f = ()
while true do:

construct residual graph Gy
find an augmenting path P in Gf, if none exists, break

update f by sending as much flow as possible along P in G

return f

Ford-Fulkerson algorithm

(more precise)

start with f = 0
while true do:

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f

Ford-Fulkerson algorithm example
% 2,

3 D\
39'%3
| 1

start with f = 0
while true do:

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f

Analysis of Ford-Fulkerson

e Jermination
e Run-time

e Correctness

Termination

o Stop when there’s no augmenting path in the residual graph

Termination

o Stop when there’s no augmenting path in the residual graph

* Does this always happen? (seems natural)

Termination

o Stop when there’s no augmenting path in the residual graph

* Does this always happen? (seems natural) NO!!!
F=S (ot ob Phgn=0)

theve & o Sequence ag— o, ?a\%\\g
W Velue < ﬁ\,l 915/ quqsll 951 «b3/

Run-time
Assuming positive integer capacities

 Why do integer capacities help?

Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / » fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A

If none exists, break

A =minyc,: e € P}

for each ¢ € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / » fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A

If none exists, break

A =minyc,: e € P}

for each ¢ € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

e can only loop OPT times

Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / . fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A

If none exists, break

A =minyc,: e € P}

for each ¢ € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

e can only loop OPT times

* each loop takes O(m) time

Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / . fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A
if none exists, break

A =min{c,: e € P}
for each ¢ € P:
if e is a forward edge in G, setf, =/, + A + total time: O(m - OPT)
else, setf, =/, — A

e can only loop OPT times

* each loop takes O(m) time

Run-time
Assuming positive integer capacities

e« O(m - OPT) is... not very good. Can be exponential (in the size of input)

(0P i = Olm- L)
/\< Oncole \v\()ufr it O bds +
4 o9 [oq | LS.
3 J ¢)
B\’C)/(I /V\le S\ILe. < OCC_—F loj L>

Correctness

e Result is a valid flow

e The flow value is maximal

vValid flow

Claim:

start with f = 0
while true do:

Flow is valid at the end of each loop.

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f

vValid flow

Claim:

start with f = 0
while true do:

Flow is valid at the end of each loop.

construct residual graph Gf with capacities ¢’ Proof:

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f

Optimality

Definitions:

An s — t cut of the graph G = (V, E) is a partition of V into 2 sets A, B so that
seEA,tEB.

e

The capacity of the cutis c(A, B) = Z C

e=(u,v),ucA,veB

Optimality

Definitions:
Let f be any flow. For a subset of vertices A C V, define

fray= Y foand A=Y f=FV\A)

e=(u,v),uEA,veA e=(u,v),ucA,v&A

For any cut (A, B), define the net flow across the cut as

flA, B) = f*(A) — f"(A).

Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

floun Ay — fim(A) < ¢(A, B).

Corollary:
orollary A F) < (AL B).

Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Proof:

Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

floun Ay — fim(A) < ¢(A, B).

Proof:

Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

floun Ay — fim(A) < ¢(A, B).

Corollary:
orollary A F) < (AL B).

Optimality

Corollary:

For any flow f and any cut (A, B),
v(f) < c(A, B).

In particular, max v(f) < minc(A, B).
/ (A,B)

Optimality

Corollary:

For any flow f and any cut (A, B),
v(f) < c(A, B).

In particular, max v(f) < minc(A, B).
/ (A,B)

Goal: To show our solution f is optimal, find a cut (A, B) where v(f) = c(A, B).

Optimality

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices
reachable from s in G, and let B = V\A . Then v(f) = c(A, B).

Proof:

Optimality

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices
reachable from s in G, and let B = V\A . Then v(f) = c(A, B).

Corollary:
Ford-Fulkerson is correct, and max flow = min cut.

