Lecture 18: max flow
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Problem setup

Input:

» directed graph G = (V, E) with special vertices s
(source) and 7 (sink)

» edge capacitiesc =(c,: e € E) > ()




Problem setup

Input:

» directed graph G = (V, E) with special vertices s
(source) and 7 (sink)

» edge capacitiesc =(c,: e € E) > ()

Output:
» flowf = (f,:e € L), i.e. satisfies

» 0 <L f, < c, foreach edge e
o f(v) = f°"(v) for each vertex v # s, t

e maximize the value of the flow, I.e.

v(f) = fs) = f"(1)



Brief history of max flow

year authors run-time bound m edges
ot n vertices
1954 Harris and Ross first mtroduc_:ed to model .
Soviet railway flow max edge capacity
U
1955 Ford and Fulkerson O(hmU)
1970 Dinitz, Edmond and Karp O(nm2)
1983 Sleater and Tarjan O(nm log n)
1986 Goldberg and Tarjan O(nm log (n2/m))
1987 Ahuja and Orlin O(hm + n2 log U)
O(m>”?log(n?/m)log U
1997 Goldberg and Rao ( -3 & ) flog U)
On“"mlog(n“/m)log U)
2012 Orlin, King et al. O(nm)
2014 Lee and Sidford O(m\/n 10g%D U 1og?" n)
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Minimum Cost Flows, MDPs, and #;-Regression
in Nearly Linear Time for Dense Instances
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Aaron Sidford¥ Zhao Song! Di Wang**

August 24, 2021

Abstract

In this paper we provide new randomized algorithms with improved runtimes for solving
linear programs with two-sided constraints. In the special case of the minimum cost flow
problem on n-vertex m-edge graphs with integer polynomially-bounded costs and capacities
we obtain a randomized method which solves the problem in O(m+n'®) time. This improves

upon the previous best runtime of 5(m\/ﬁ) (LS14] and, in the special case of unit-capacity
maximum flow, improves upon the previous best runtimes of m*/*+°(}) [L§20a, Kat20] and

O(m./n) [LS14] for sufficiently dense graphs.
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ldeas for an approach?




Greedy pitfalls




Residual graph

. denote by Gf, depends on G and f

 same set of vertices

- for every edge ¢ = (u, v) in G with flow f,, add
» edge (u, v) with capacity ¢, — f,, if ¢, > |,
» edge (v, u) with capacity f, if f, > 0
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. denote by Gf, depends on G and f

e same set of vertices

- for every edge ¢ = (u, v) in G with flow f,, add

» edge (u, v) with capacity ¢, — f,, if ¢, > |,
» edge (v, u) with capacity f, if f, > 0




Augmenting path

Definition:

An augmenting path is an s — ¢ path in Gy



Augmenting path

Definition:

An augmenting path is an s — ¢ path in Gy

We can send flow in G along the augmenting path. This gives an updated flow.

Repeat this process? Until when?



Ford-Fulkerson algorithm

start with f = ()
while true do:

construct residual graph Gy
find an augmenting path P in Gf, if none exists, break

update f by sending as much flow as possible along P in G

return f



Ford-Fulkerson algorithm

(more precise)

start with f = 0
while true do:

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f



Ford-Fulkerson algorithm example
% 2,

3 D\
39'%3
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start with f = 0
while true do:

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f




Analysis of Ford-Fulkerson

e Jermination
e Run-time

e Correctness



Termination

o Stop when there’s no augmenting path in the residual graph



Termination

o Stop when there’s no augmenting path in the residual graph

* Does this always happen? (seems natural)



Termination

o Stop when there’s no augmenting path in the residual graph

* Does this always happen? (seems natural) NO!!!
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Run-time
Assuming positive integer capacities

 Why do integer capacities help?



Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / » fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A

If none exists, break

A =minyc,: e € P}

for each ¢ € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A
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e can only loop OPT times
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Assuming positive integer capacities

start with f = 0
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while true do: algorithm
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e can only loop OPT times

* each loop takes O(m) time



Ford-Fulkerson run-time

Assuming positive integer capacities

start with f = 0
. / . fis integral throughout the
while true do: algorithm

construct residual graph G¢ with capacities ¢’
e each loop, value of flow

find an augmenting path P in G increases by integer A
if none exists, break

A =min{c,: e € P}
for each ¢ € P:
if e is a forward edge in G, setf, =/, + A + total time: O(m - OPT)
else, setf, =/, — A

e can only loop OPT times

* each loop takes O(m) time



Run-time
Assuming positive integer capacities

e« O(m - OPT) is... not very good. Can be exponential (in the size of input)
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Correctness

e Result is a valid flow

e The flow value is maximal



vValid flow

Claim:

start with f = 0
while true do:

Flow is valid at the end of each loop.

construct residual graph G¢ with capacities ¢’

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f



vValid flow

Claim:

start with f = 0
while true do:

Flow is valid at the end of each loop.

construct residual graph Gf with capacities ¢’ Proof:

find an augmenting path P in G
If none exists, break

A =minyc,: e € P}

for each e € P:
if ¢ is a forward edge in G, setf, =f,+ A
else, setf, =/, — A

return f



Optimality

Definitions:

An s — t cut of the graph G = (V, E) is a partition of V into 2 sets A, B so that
seEA,tEB.

e

The capacity of the cutis c(A, B) = Z C

e=(u,v),ucA,veB



Optimality

Definitions:
Let f be any flow. For a subset of vertices A C V, define

fray= Y foand A=Y f=FV\A)

e=(u,v),uEA,veA e=(u,v),ucA,v&A

For any cut (A, B), define the net flow across the cut as

flA, B) = f*(A) — f"(A).



Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

floun Ay — fim(A) < ¢(A, B).

Corollary:
orollary A F) < (AL B).
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Optimality

Lemma 1:
For any flow f and any cut (A, B), we have

v(f) = flA, B) := f*(A) — f"(A).

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

floun Ay — fim(A) < ¢(A, B).

Corollary:
orollary A F) < (AL B).



Optimality

Corollary:

For any flow f and any cut (A, B),
v(f) < c(A, B).

In particular, max v(f) < minc(A, B).
/ (A,B)



Optimality

Corollary:

For any flow f and any cut (A, B),
v(f) < c(A, B).

In particular, max v(f) < minc(A, B).
/ (A,B)

Goal: To show our solution f is optimal, find a cut (A, B) where v(f) = c(A, B).



Optimality

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices
reachable from s in G, and let B = V\A . Then v(f) = c(A, B).

Proof:



Optimality

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices
reachable from s in G, and let B = V\A . Then v(f) = c(A, B).

Corollary:
Ford-Fulkerson is correct, and max flow = min cut.



