Lecture 18: max flow

Problem setup

Input:

- directed graph G = (V, E) with special vertices s (source) and *t* (sink)
- edge capacities $c = (c_e : e \in E) \ge 0$

Problem setup

Input:

- directed graph G = (V, E) with special vertices s (source) and t (sink)
- edge capacities $\boldsymbol{c} = (c_{\rho} : e \in E) \geq \boldsymbol{0}$

Output:

- flow $f = (f_e : e \in E)$, i.e. satisfies
 - $0 \le f_e \le c_e$ for each edge *e*
 - $f^{in}(v) = f^{out}(v)$ for each vertex $v \neq s, t$
- maximize the *value* of the flow, i.e.

$$v(\boldsymbol{f}) := f^{out}(s) = f^{in}(t)$$

2,

Brief history of max flow

year	authors
1954	Harris and Ross
1955	Ford and Fulkerson
1970	Dinitz, Edmond and Karp
1983	Sleater and Tarjan
1986	Goldberg and Tarjan
1987	Ahuja and Orlin
1997	Goldberg and Rao
2012	Orlin, King et al.
2014	Lee and Sidford
:	

first introduced to model Soviet railway flow

O(nmU)

 $O(nm^2)$

O(nm log n)

 $O(nm \log (n^2/m))$

 $O(nm + n^2 \log U)$

 $O(m^{3/2}\log(n^2/m)\log U)$

 $O(n^{2/3}m\log(n^2/m)\log U)$

O(nm)

 $O(m\sqrt{n}\log^{O(1)}U\log^{O(1)}n)$

m edges n vertices max edge capacity U

 $\widetilde{O}(m\sqrt{n})$ [LS14] for sufficiently dense graphs.

Minimum Cost Flows, MDPs, and ℓ_1 -Regression in Nearly Linear Time for Dense Instances

Thatchaphol Saranurak[§] Yang P. Liu[‡] Zhao Song^{||} Di Wang** August 24, 2021

Abstract

In this paper we provide new randomized algorithms with improved runtimes for solving linear programs with two-sided constraints. In the special case of the minimum cost flow problem on *n*-vertex *m*-edge graphs with integer polynomially-bounded costs and capacities we obtain a randomized method which solves the problem in $\tilde{O}(m+n^{1.5})$ time. This improves upon the previous best runtime of $O(m\sqrt{n})$ [LS14] and, in the special case of unit-capacity maximum flow, improves upon the previous best runtimes of $m^{4/3+o(1)}$ [LS20a, Kat20] and

Ideas for an approach?

Greedy pitfalls

) 七

Residual graph

- denote by G_f , depends on G and f
- same set of vertices
- for every edge e = (u, v) in G with flow f_e , add
 - edge (u, v) with capacity $c_e f_e$, if $c_e > f_e$
 - edge (v, u) with capacity f_e , if $f_e > 0$

flow f_e , add if $c_e > f_e$ > 0

Residual graph

- denote by G_f , depends on G and f
- same set of vertices
- for every edge e = (u, v) in G with flow f_e , add
 - edge (u, v) with capacity $c_e f_e$, if $c_e > f_e$
 - edge (v, u) with capacity f_e , if $f_e > 0$

Augmenting path

Definition:

An augmenting path is an s - t path in G_f .

Augmenting path

Definition:

An augmenting path is an s - t path in G_{f} .

We can send flow in G along the augree Repeat this process? Until when?

We can send flow in G along the augmenting path. This gives an updated flow.

Ford-Fulkerson algorithm

start with f = 0while true do: construct residual graph G_f find an *augmenting path* P *in* G_f , if none exists, **break** update f by sending as much flow as possible along P in G return f

Ford-Fulkerson algorithm (more precise)

- start with f = 0while true do:
 - construct residual graph G_f with capacities c'
 - find an augmenting path P in G_f
 - if none exists, **break**
 - $\Delta = \min\{c'_e : e \in P\}$
 - for each $e \in P$:

Ford-Fulkerson algorithm example

- start with f = 0while true do:
 - construct residual graph G_f with capacities c'
 - find an augmenting path P in G_f
 - if none exists, break
 - $\Delta = \min\{c'_e : e \in P\}$
 - for each $e \in P$:

if e is a forward edge in G, set $f_e=f_e+\Delta$ else, set $f_e=f_e-\Delta$ return f

Analysis of Ford-Fulkerson

- Termination
- Run-time
- Correctness

Termination

Stop when there's no augmenting path in the residual graph

Termination

- Stop when there's no augmenting path in the residual graph
- Does this always happen? (seems natural)

Termination

- Stop when there's no augmenting path in the residual graph Does this always happen? (seems natural) NO!!!

$$f \phi^2 + \phi - 1 = 0$$

there is a sequence of ang. paths with values $1, \phi, \phi, \phi^2, \phi^2, \phi^3, \dots$ lotal value = $1+2\sum_{i=1}^{\infty}\phi_{i}^{i} = 1+\frac{2}{1-\phi}<7$

Run-time Assuming positive integer capacities

• Why do integer capacities help?

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_{\rho} : e \in P\}$

for each $e \in P$:

- f is integral throughout the algorithm
- each loop, value of flow increases by integer Δ

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_{\rho} : e \in P\}$

for each $e \in P$:

- f is integral throughout the algorithm
- each loop, value of flow increases by integer Δ
- can only loop OPT times

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_{\rho} : e \in P\}$

for each $e \in P$:

- *f* is integral throughout the algorithm
- each loop, value of flow increases by integer Δ
- can only loop OPT times
- each loop takes O(m) time

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_{e} : e \in P\}$

for each $e \in P$:

- *f* is integral throughout the algorithm
- each loop, value of flow increases by integer Δ
- can only loop OPT times
- each loop takes O(m) time
- total time: $O(m \cdot OPT)$

Run-time Assuming positive integer capacities

• $O(m \cdot OPT)$ is... not very good. Can be exponential (in the size of input) $D(m \cdot DPT)$ fine $= O(m \cdot L)$ encode input with C bits t log L bits. Input SIZE = O(C+logL)

Correctness

- Result is a valid flow
- The flow value is maximal

Valid flow

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_e : e \in P\}$

for each $e \in P$:

if e is a forward edge in G, set $f_e = f_e + \Delta$ else, set $f_e = f_e - \Delta$ return f

Claim:

Flow is valid at the end of each loop.

Valid flow

start with f = 0while true do:

construct residual graph G_f with capacities c'

find an augmenting path P in G_f

if none exists, **break**

 $\Delta = \min\{c'_e : e \in P\}$

for each $e \in P$:

if *e* is a forward edge in *G*, set $f_e = f_e + \Delta$ else, set $f_e = f_e - \Delta$ return f

Claim:

Flow is valid at the end of each loop. **Proof:**

Definitions:

An s - t cut of the graph G = (V, E) $s \in A, t \in B$.

The capacity of the cut is c(A, B) =

An s - t cut of the graph G = (V, E) is a partition of V into 2 sets A, B so that

 C_{e} . $e = (u, v), u \in A, v \in B$

Definitions:

Let f be any flow. For a subset of vertices $A \subseteq V$, define

$$f^{in}(A) = \sum_{e=(u,v), u \notin A, v \in A} f_e, \text{ and } f^{ou}$$

For any cut (A, B), define the *net flow across the cut* as

$f_e^{It}(A) = \int f_e^{in}(V \setminus A)$ $e = (u, v), u \in A, v \notin A$

 $f(A, B) = f^{out}(A) - f^{in}(A).$

Lemma 1:

For any flow f and any cut (A, B), we have v(f) = f(A, B)

Lemma 2:

The net flow across the cut cannot exceed the capacity of the cut, i.e.

Corollary:

$$:= f^{out}(A) - f^{in}(A).$$

$f^{(out)}(A) - f^{(in)}(A) \le c(A, B).$

$v(f) \leq c(A, B).$

Lemma 1:

For any flow f and any cut (A, B), we have

Proof:

 $v(f) = f(A, B) := f^{out}(A) - f^{in}(A).$

Lemma 1:

For any flow f and any cut (A, B), we have v(f) = f(A, B)

Lemma 2:

The net flow across the cut cannot exceed the capacity of the cut, i.e.

Proof:

$$:= f^{out}(A) - f^{in}(A).$$

$f^{(out)}(A) - f^{(in)}(A) \le c(A, B).$

Lemma 1:

For any flow f and any cut (A, B), we have v(f) = f(A, B)

Lemma 2:

The net flow across the cut cannot exceed the capacity of the cut, i.e.

Corollary:

$$:= f^{out}(A) - f^{in}(A).$$

$f^{(out)}(A) - f^{(in)}(A) \le c(A, B).$

$v(f) \leq c(A, B).$

Corollary: For any flow f and any cut (A, B),

In particular,

$v(f) \leq c(A, B).$ $\max_{f} v(f) \leq \min_{(A,B)} c(A,B).$

Corollary: For any flow f and any cut (A, B),

In particular,

Goal: To show our solution f is optimal, find a cut (A, B) where v(f) = c(A, B).

- $v(f) \leq c(A, B).$
- $\max_{f} v(f) \leq \min_{(A,B)} c(A,B).$

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices reachable from s in G_f , and let $B = V \setminus A$. Then v(f) = c(A, B).

Proof:

Lemma 3:

Let f be the flow returned by Ford-Fulkerson. Let A be the set of vertices reachable from s in G_f , and let $B = V \setminus A$. Then v(f) = c(A, B).

Corollary:

Ford-Fulkerson is correct, and max flow = min cut.