
Lecture 18: max flow



Problem setup
Input: 


• directed graph  with special vertices  
(source) and  (sink)


• edge capacities 


G = (V, E) s
t

c = (ce : e ∈ E) ≥ 0



Problem setup
Input: 


• directed graph  with special vertices  
(source) and  (sink)


• edge capacities 


Output:


• flow , i.e. satisfies


•  for each edge 


•   for each vertex 


• maximize the value of the flow, i.e. 


                   

G = (V, E) s
t

c = (ce : e ∈ E) ≥ 0

f = ( fe : e ∈ E)
0 ≤ fe ≤ ce e
f in(v) = f out(v) v ≠ s, t

v( f ) := f out(s) = f in(t)



Brief history of max flow
year authors run-time bound

1954 Harris and Ross first introduced to model 

Soviet railway flow

1955 Ford and Fulkerson O(nmU)

1970 Dinitz, Edmond and Karp O(nm²)

1983 Sleater and Tarjan O(nm log n)

1986 Goldberg and Tarjan O(nm log (n²/m))

1987 Ahuja and Orlin O(nm + n² log U)

1997 Goldberg and Rao

2012 Orlin, King et al.

2014 Lee and Sidford

⠇ ⠇ ⠇

m edges

n vertices

max edge capacity 
U

O(m3/2 log(n2/m)log U)
O(n2/3m log(n2/m)log U)

O(m n logO(1) U logO(1) n)

O(nm)



O(m3/2 log(n2/m)log U)
O(n2/3m log(n2/m)log U)

O(m n logO(1) U logO(1) n)

O(nm)



Ideas for an approach?



Greedy pitfalls



Residual graph

• denote by , depends on  and 


• same set of vertices


• for every edge  in  with flow , add


• edge  with capacity , if 


• edge  with capacity , if 

Gf G f

e = (u, v) G fe
(u, v) ce − fe ce > fe
(v, u) fe fe > 0



Residual graph

• denote by , depends on  and 


• same set of vertices


• for every edge  in  with flow , add


• edge  with capacity , if 


• edge  with capacity , if 

Gf G f

e = (u, v) G fe
(u, v) ce − fe ce > fe
(v, u) fe fe > 0

Example



Augmenting path

Definition: 

An augmenting path is an  path in .
s − t Gf



Augmenting path

Definition: 

An augmenting path is an  path in .


We can send flow in  along the augmenting path. This gives an updated flow.


Repeat this process? Until when?

s − t Gf

G



Ford-Fulkerson algorithm

start with 

while true do:


construct residual graph 


find an augmenting path  in , if none exists, break


update  by sending as much flow as possible along  in 

return 

f = 0

Gf

P Gf

f P G
f



Ford-Fulkerson algorithm
(more precise)

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 


return 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f



Ford-Fulkerson algorithm example

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 


return 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f



Analysis of Ford-Fulkerson

• Termination


• Run-time


• Correctness



Termination

• Stop when there’s no augmenting path in the residual graph



Termination

• Stop when there’s no augmenting path in the residual graph


• Does this always happen? (seems natural)



Termination

• Stop when there’s no augmenting path in the residual graph


• Does this always happen? (seems natural) NO!!!



Run-time
Assuming positive integer capacities

• Why do integer capacities help?



Ford-Fulkerson run-time

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

•  is integral throughout the 
algorithm


• each loop, value of flow 
increases by integer 


f

Δ

Assuming positive integer capacities



Ford-Fulkerson run-time

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

•  is integral throughout the 
algorithm


• each loop, value of flow 
increases by integer 


• can only loop OPT times

f

Δ

Assuming positive integer capacities



Ford-Fulkerson run-time

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

•  is integral throughout the 
algorithm


• each loop, value of flow 
increases by integer 


• can only loop OPT times


• each loop takes O(m) time

f

Δ

Assuming positive integer capacities



Ford-Fulkerson run-time

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

•  is integral throughout the 
algorithm


• each loop, value of flow 
increases by integer 


• can only loop OPT times


• each loop takes O(m) time


• total time: 

f

Δ

O(m ⋅ OPT)

Assuming positive integer capacities



Run-time
Assuming positive integer capacities

•  is… not very good. Can be exponential (in the size of input)O(m ⋅ OPT)



Correctness

• Result is a valid flow


• The flow value is maximal



Valid flow

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 


return 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Claim:  

Flow is valid at the end of each loop.



Valid flow

start with 

while true do:


construct residual graph  with capacities 


find an augmenting path  in  

if none exists, break




for each :


if  is a forward edge in , set 

else, set 


return 

f = 0

Gf c′ 

P Gf

Δ = min{c′ e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Claim:  

Flow is valid at the end of each loop.


Proof: 



Optimality
Definitions:
An  cut of the graph  is a partition of  into 2 sets  so that 

The capacity of the cut is  .

s − t G = (V, E) V A, B
s ∈ A, t ∈ B .

c(A, B) = ∑
e=(u,v),u∈A,v∈B

ce



Optimality
Definitions:
Let  be any flow. For a subset of vertices , define

 ,  and  

For any cut , define the net flow across the cut as

.

f A ⊆ V

f in(A) = ∑
e=(u,v),u∉A,v∈A

fe f out(A) = ∑
e=(u,v),u∈A,v∉A

fe = f in(V∖A)

(A, B)

f(A, B) = f out(A) − f in(A)



Optimality
Lemma 1:
For any flow  and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.


Corollary:
.

f (A, B)
v( f ) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)

v( f ) ≤ c(A, B)



Optimality
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.

Proof:
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v( f ) = f(A, B) := f out(A) − f in(A)



Optimality
Lemma 1:
For any flow  and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.


Proof:

f (A, B)
v( f ) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)



Optimality
Lemma 1:
For any flow  and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.


Corollary:
.

f (A, B)
v( f ) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)

v( f ) ≤ c(A, B)



Optimality
Corollary: 
For any flow   and any cut , 

.

In particular,                        .

f (A, B)
v( f ) ≤ c(A, B)

max
f

v( f ) ≤ min
(A,B)

c(A, B)



Optimality
Corollary: 
For any flow   and any cut , 

.

In particular,                        .

Goal: To show our solution  is optimal, find a cut  where .

f (A, B)
v( f ) ≤ c(A, B)

max
f

v( f ) ≤ min
(A,B)

c(A, B)

f (A, B) v( f ) = c(A, B)



Optimality
Lemma 3:
Let  be the flow returned by Ford-Fulkerson. Let  be the set of vertices 
reachable from  in , and let Then . 

Proof:

f A
s Gf B = V∖A . v( f ) = c(A, B)



Optimality
Lemma 3:
Let  be the flow returned by Ford-Fulkerson. Let  be the set of vertices 
reachable from  in , and let Then . 

Corollary:
Ford-Fulkerson is correct, and max flow = min cut.

f A
s Gf B = V∖A . v( f ) = c(A, B)


