
Lecture 18: max flow

Problem setup
Input:

• directed graph with special vertices
(source) and (sink)

• edge capacities

G = (V, E) s
t

c = (ce : e ∈ E) ≥ 0

Problem setup
Input:

• directed graph with special vertices
(source) and (sink)

• edge capacities

Output:

• flow , i.e. satisfies

• for each edge

• for each vertex

• maximize the value of the flow, i.e.

G = (V, E) s
t

c = (ce : e ∈ E) ≥ 0

f = (fe : e ∈ E)
0 ≤ fe ≤ ce e
f in(v) = f out(v) v ≠ s, t

v(f) := f out(s) = f in(t)

Brief history of max flow
year authors run-time bound

1954 Harris and Ross first introduced to model

Soviet railway flow

1955 Ford and Fulkerson O(nmU)

1970 Dinitz, Edmond and Karp O(nm²)

1983 Sleater and Tarjan O(nm log n)

1986 Goldberg and Tarjan O(nm log (n²/m))

1987 Ahuja and Orlin O(nm + n² log U)

1997 Goldberg and Rao

2012 Orlin, King et al.

2014 Lee and Sidford

⠇ ⠇ ⠇

m edges

n vertices

max edge capacity
U

O(m3/2 log(n2/m)log U)
O(n2/3m log(n2/m)log U)

O(m n logO(1) U logO(1) n)

O(nm)

O(m3/2 log(n2/m)log U)
O(n2/3m log(n2/m)log U)

O(m n logO(1) U logO(1) n)

O(nm)

Ideas for an approach?

Greedy pitfalls

Residual graph

• denote by , depends on and

• same set of vertices

• for every edge in with flow , add

• edge with capacity , if

• edge with capacity , if

Gf G f

e = (u, v) G fe
(u, v) ce − fe ce > fe
(v, u) fe fe > 0

Residual graph

• denote by , depends on and

• same set of vertices

• for every edge in with flow , add

• edge with capacity , if

• edge with capacity , if

Gf G f

e = (u, v) G fe
(u, v) ce − fe ce > fe
(v, u) fe fe > 0

Example

Augmenting path

Definition:

An augmenting path is an path in .
s − t Gf

Augmenting path

Definition:

An augmenting path is an path in .

We can send flow in along the augmenting path. This gives an updated flow.

Repeat this process? Until when?

s − t Gf

G

Ford-Fulkerson algorithm

start with

while true do:

construct residual graph

find an augmenting path in , if none exists, break

update by sending as much flow as possible along in

return

f = 0

Gf

P Gf

f P G
f

Ford-Fulkerson algorithm
(more precise)

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

return

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Ford-Fulkerson algorithm example

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

return

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Analysis of Ford-Fulkerson

• Termination

• Run-time

• Correctness

Termination

• Stop when there’s no augmenting path in the residual graph

Termination

• Stop when there’s no augmenting path in the residual graph

• Does this always happen? (seems natural)

Termination

• Stop when there’s no augmenting path in the residual graph

• Does this always happen? (seems natural) NO!!!

Run-time
Assuming positive integer capacities

• Why do integer capacities help?

Ford-Fulkerson run-time

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

• is integral throughout the
algorithm

• each loop, value of flow
increases by integer

f

Δ

Assuming positive integer capacities

Ford-Fulkerson run-time

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

• is integral throughout the
algorithm

• each loop, value of flow
increases by integer

• can only loop OPT times

f

Δ

Assuming positive integer capacities

Ford-Fulkerson run-time

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

• is integral throughout the
algorithm

• each loop, value of flow
increases by integer

• can only loop OPT times

• each loop takes O(m) time

f

Δ

Assuming positive integer capacities

Ford-Fulkerson run-time

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

• is integral throughout the
algorithm

• each loop, value of flow
increases by integer

• can only loop OPT times

• each loop takes O(m) time

• total time:

f

Δ

O(m ⋅ OPT)

Assuming positive integer capacities

Run-time
Assuming positive integer capacities

• is… not very good. Can be exponential (in the size of input)O(m ⋅ OPT)

Correctness

• Result is a valid flow

• The flow value is maximal

Valid flow

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

return

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Claim:

Flow is valid at the end of each loop.

Valid flow

start with

while true do:

construct residual graph with capacities

find an augmenting path in

if none exists, break

for each :

if is a forward edge in , set

else, set

return

f = 0

Gf c′￼

P Gf

Δ = min{c′￼e : e ∈ P}
e ∈ P

e G fe = fe + Δ
fe = fe − Δ

f

Claim:

Flow is valid at the end of each loop.

Proof:

Optimality
Definitions:
An cut of the graph is a partition of into 2 sets so that

The capacity of the cut is .

s − t G = (V, E) V A, B
s ∈ A, t ∈ B .

c(A, B) = ∑
e=(u,v),u∈A,v∈B

ce

Optimality
Definitions:
Let be any flow. For a subset of vertices , define

 , and

For any cut , define the net flow across the cut as

.

f A ⊆ V

f in(A) = ∑
e=(u,v),u∉A,v∈A

fe f out(A) = ∑
e=(u,v),u∈A,v∉A

fe = f in(V∖A)

(A, B)

f(A, B) = f out(A) − f in(A)

Optimality
Lemma 1:
For any flow and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.

Corollary:
.

f (A, B)
v(f) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)

v(f) ≤ c(A, B)

Optimality
Lemma 1:
For any flow and any cut , we have

.

Proof:

f (A, B)
v(f) = f(A, B) := f out(A) − f in(A)

Optimality
Lemma 1:
For any flow and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.

Proof:

f (A, B)
v(f) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)

Optimality
Lemma 1:
For any flow and any cut , we have

.

Lemma 2:
The net flow across the cut cannot exceed the capacity of the cut, i.e.

.

Corollary:
.

f (A, B)
v(f) = f(A, B) := f out(A) − f in(A)

f (out)(A) − f (in)(A) ≤ c(A, B)

v(f) ≤ c(A, B)

Optimality
Corollary:
For any flow and any cut ,

.

In particular, .

f (A, B)
v(f) ≤ c(A, B)

max
f

v(f) ≤ min
(A,B)

c(A, B)

Optimality
Corollary:
For any flow and any cut ,

.

In particular, .

Goal: To show our solution is optimal, find a cut where .

f (A, B)
v(f) ≤ c(A, B)

max
f

v(f) ≤ min
(A,B)

c(A, B)

f (A, B) v(f) = c(A, B)

Optimality
Lemma 3:
Let be the flow returned by Ford-Fulkerson. Let be the set of vertices
reachable from in , and let Then .

Proof:

f A
s Gf B = V∖A . v(f) = c(A, B)

Optimality
Lemma 3:
Let be the flow returned by Ford-Fulkerson. Let be the set of vertices
reachable from in , and let Then .

Corollary:
Ford-Fulkerson is correct, and max flow = min cut.

f A
s Gf B = V∖A . v(f) = c(A, B)

