

Application of Max Flow

Yin Tat Lee

Applications of Max Flow: Bipartite Matching

Maximum Matching Problem

Given an undirected graph G = (V, E).

A set $M \subseteq E$ is a matching if each vertex appears in at most 1 edge in M.

Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bipartite graph $G = (X \cup Y, E)$ A set $M \subseteq E$ is a matching if each vertex appears in at most 1 edge in M.

Goal: find a matching with largest cardinality.

Bipartite Matching using Max Flow

Create digraph *H* as follows:

- Orient all edges from X to Y and assign infinite (or unit) capacity.
- Add source *s*, and unit capacity edges from *s* to each node in *X*.
- Add sink *t*, and unit capacity edges from each node in *Y* to *t*.

Η

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.

Pf. (matching val ≤ maxflow val)

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k edges of M.

f is a flow and has cardinality k.

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H. Pf. (of matching val \geq flow val) Let f be a max flow in H of value k. Integrality theorem $\Rightarrow k$ is integral and we can assume f is 0-1. Consider M = set of edges from X to Y with f(e) = 1.

- each node in X and Y participates in at most one edge in M
- |M| = k because the flow from $s \cup X$ to $Y \cup t$ equals to the flow value k.

Applications of Max Flow: Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching $M \subset E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

- Clearly we must have |X| = |Y|.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Bipartite Matching: N(S)

S

Def. Let *S* be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in *S*.

Observation. If a bipartite graph *G* has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subset X$. Pf. Each $v \in S$ has to be matched to a unique node in N(S).

N(S)

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G = (X \cup Y, E)$ be a bipartite graph with |X| = |Y|.

Then, *G* has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow

This was the previous observation.

If |N(S)| < |S| for some *S*, then there is no perfect matching.

Marriage Theorem

Pf. $\exists S \subseteq X$ s.t., $|N(S)| < |S| \notin G$ does not a perfect matching Formulate as a max-flow and let (A, B) be the min s-t cut G has no perfect matching => $v(f^*) < |X|$. So, cap(A, B) < |X|Define $X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A$ Then, $cap(A, B) \ge |X_B| + |Y_A|$ Since min-cut does not use ∞ edges, $N(X_A) \subseteq Y_A$ $|N(X_A)| \le |Y_A| \le cap(A, B) - |X_B| = cap(A, B) - |X| + |X_A| < |X_A|$

12

Applications of Max Flow: Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s - t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value. Proof. # of disjoint path \leq maxflow value Suppose there are k edge-disjoint paths P_1, \dots, P_k . Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0. Since paths are edge-disjoint, f is a flow of value k.

Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value. Pf. # of disjoint path \geq maxflow val Suppose max flow value is k Integrality theorem \Rightarrow there exists 0-1 flow f of value k. Consider edge (s, u) with f(s, u) = 1.

- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach *t*, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.

Applications of Max Flow: Project Selection

Project Selection

Given a DAG G = (V, E) representing precedence constraints on tasks (a task points to its predecessors).

• Task $v \in V$ has a profit value p(v) (can be positive or negative).

Goal: Find a set $A \subset V$ of tasks that

- satisfies the precedence constraints,
- maximizes $\operatorname{Profit}(A) = \sum_{v \in A} p(v)$.

18

Each task points to its predecessors

S

For each v

Goal: Set capacities on edges of *G* so that for minimum *s*-*t* cut (S, \overline{S}) in *G'*, the set $A = S - \{s\}$

- satisfies precedence constraints
- has maximum possible profit in *G*

To satisfy constraints, don't want any original edges of *G* cross the minimum cut

• Otherwise, a task in $A = S - \{s\}$ had a predecessor not in A.

How?

Set capacity of each of the edges of G to $+\infty$.

Project Selection

Claim: For any *s*-*t* cut (S, \overline{S}) in *G*' with finite capacity, the set $A = S - \{s\}$ satisfies

- precedence constraints and
- has capacity $\operatorname{cap}(S,\overline{S}) = C \sum_{\nu \in A} p(\nu) = C \operatorname{Profit}(A)$

Corollary: A minimum *s*-*t* cut (S, \overline{S}) in *G'* yields an optimal solution $A = S - \{s\}$ to the project selection problem

Algorithm:

- Compute maximum flow f in G'
- Find the set S of vertices reachable from s in G'_f
- **Return** $S \{s\}$

Proof of Claim

- $A = S \{s\}$ satisfies precedence constraints No edge of *G* crosses forward out of *A* since those edges have capacity $+\infty$
- Capacity = C Profit(A)

Only forward edges cut are of the form

$$(v, t)$$
 for $v \in A$ or (s, v) for $v \notin A$

The (v, t) edges for $v \in A$ contribute

$$\sum_{v \in A: p(v) < 0} -p(v) = -\sum_{v \in A: p(v) < 0} p(v)$$

The (s, v) edges for $v \notin A$ contribute

$$\sum_{v \notin A: p(v) > 0} p(v) = C - \sum_{v \in A: p(v) > 0} p(v)$$

Therefore, the total capacity is

$$C - \sum_{v:p(v)>0} p(v) = C - \operatorname{Profit}(A)$$

Applications of Max Flow: Image Segmentation

Image Segmentation

Given an image we want to separate foreground from background

- Important problem in image processing.
- Divide image into coherent regions.

Foreground / background segmentation

Label each pixel as foreground/background.

- V = set of pixels, E = pairs of neighboring pixels.
- a_i is the original image.
- $a_i \gg 0$ means we prefer to label *i* in foreground.
- $p_{i,j} \ge 0$ is separation penalty for labeling one of *i* and j as foreground, and the other as background.

Goals:

Find partition (S, \overline{S}) that minimizes:

$$-\sum_{i\in S} a_i + \sum_{\substack{(i,j)\in E\\i\in S, j\in \overline{S}}} p_{i,j}$$

where *S* is the foreground.

Min cut Formulation

G' = (V', E').Add *s* to correspond to foreground; Add *t* to correspond to background; Use two anti-parallel edges instead of undirected edge.

Min cut Formulation (cont'd)

• Consider min cut (S, \overline{S}) in G'. (S = foreground.)

$$cap(S,\overline{S}) = \sum_{i \in S} -a_i \, 1_{a_i < 0} + \sum_{i \in \overline{S}} a_i \, 1_{a_i > 0} + \sum_{\substack{(i,j) \in E \\ i \in S, j \in \overline{S}}} p_{i,j}$$
$$= -\sum_{i \in S} a_i + \sum_{i \in S} a_i \, 1_{a_i > 0} + \sum_{i \in \overline{S}} a_i \, 1_{a_i > 0} + \sum_{\dots} p_{i,j}$$
$$= -\sum_{i \in S} a_i + \sum_i a_i + \sum_{\dots} p_{i,j}$$
$$= -\sum_{i \in S} a_i + \sum_{\dots} p_{i,j} + \text{constant}$$
Precisely, what we want to minimize.

30

Remark

- The main difficulty is to come up with a good model.
- May want to have human interaction.

- Segmentation may be real-valued instead of {0,1}.
- There are many more than 1 objects.
- May need labeling.
- Augmenting path is not great for GPU.

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: $O(m^2n)$.

Distance to s is non-decreasing.

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only

- deletes forward edges
 no new (hence no shorter) path created
- adds back edges that go to previous vertices along P
 BFS is unchanged, since v visited before (u, v) examined

Distance for bottleneck edges

Let $d_f(s, v)$ be the distance from s to v on G_f .

Shortest s-t path P in G_f

Theorem

Edmonds-Karp performs O(mn) flow augmentations

Proof:

- Each step, some edge disappear from G_f . (Note however that some edge may reappear.)
- Any edge (*u*, *v*) disappears from *G*_{*f*} at most *n*/2 times. (because the distance increased by 2 every disappearance.)
- There are at most mn/2 disappearances.

Total time is $O(m^2n)$.