
CSE 421

Application of Max Flow

Yin Tat Lee

1

Applications of Max Flow:

Bipartite Matching

Maximum Matching Problem

Given an undirected graph 𝐺 = (𝑉, 𝐸).
A set 𝑀 ⊆ 𝐸 is a matching if each vertex appears in at most 1

edge in 𝑀.

Goal: find a matching with largest cardinality.

3

Bipartite Matching Problem

Given an undirected bipartite graph 𝐺 = (𝑋 ∪ 𝑌, 𝐸)
A set 𝑀 ⊆ 𝐸 is a matching if each vertex appears in at most 1

edge in 𝑀.

Goal: find a matching with largest cardinality.

4

1

3

5

1'

3'

5'

2

4

2'

4'

𝑋 𝑌

Bipartite Matching using Max Flow

Create digraph 𝐻 as follows:

• Orient all edges from 𝑋 to 𝑌 and assign infinite (or unit) capacity.

• Add source 𝑠, and unit capacity edges from 𝑠 to each node in 𝑋.

• Add sink 𝑡, and unit capacity edges from each node in 𝑌 to 𝑡.

5

1

3

5

1'

3'

5'

2

4

2'

4'

s

1

t

1

∞

𝑌𝑋

𝐻

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in 𝐺 = value of max flow in 𝐻.

Pf. (matching val maxflow val)

Given max matching 𝑀 of cardinality 𝑘.

Consider flow 𝑓 that sends 1 unit along each of 𝑘 edges of 𝑀.

𝑓 is a flow and has cardinality 𝑘.

6

1

3

5

1'

3'

5'

2

4

2'

4'

𝐺

4 4'

s

1

3

5

1'

3'

5'

t

2 2'1 1

∞ 𝐻

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in 𝐺 = value of max flow in 𝐻.

Pf. (of matching val ≥ flow val) Let f be a max flow in 𝐻 of value 𝑘.

Integrality theorem 𝑘 is integral and we can assume 𝑓 is 0-1.

Consider 𝑀 = set of edges from 𝑋 to 𝑌 with 𝑓 𝑒 = 1.

• each node in 𝑋 and 𝑌 participates in at most one edge in 𝑀

• |𝑀| = 𝑘 because the flow from 𝑠 ∪ 𝑋 to 𝑌 ∪ 𝑡 equals to the flow value 𝑘.

7

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞ H
1

3

5

1'

3'

5'

2

4

2'

4'

G

Applications of Max Flow:

Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching 𝑀 ⊂ 𝐸 is perfect if each node appears in

exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

• Clearly we must have |𝑋| = |𝑌|.

• What other conditions are necessary?

• What conditions are sufficient?

9

Perfect Bipartite Matching: N(S)

Def. Let 𝑆 be a subset of nodes,

and let 𝑁(𝑆) be the set of nodes

adjacent to nodes in 𝑆.

Observation. If a bipartite graph 𝐺 has a

perfect matching, then 𝑁 𝑆 ≥ |𝑆| for all subsets 𝑆 ⊂ 𝑋.

Pf. Each 𝑣 ∈ 𝑆 has to be matched to a unique node in 𝑁(𝑆).

10

𝑆

𝑁(𝑆)

𝑆
𝑁(𝑆)

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let 𝐺 = (𝑋 ∪ 𝑌, 𝐸) be a

bipartite graph with |𝑋| = |𝑌|.

Then, 𝐺 has a perfect matching iff 𝑁 𝑆 ≥ 𝑆 for all

subsets 𝑆 ⊆ 𝑋.

Pf.

This was the previous observation.

If 𝑁 𝑆 < |𝑆| for some 𝑆, then there is no perfect

matching.

11

Marriage Theorem

Pf. ∃𝑆 ⊆ 𝑋 s.t., |𝑁 𝑆 | < |𝑆| ⇐ G does not a perfect matching

Formulate as a max-flow and let (𝐴, 𝐵) be the min s-t cut

G has no perfect matching => 𝑣 𝑓∗ < |𝑋|. So, 𝑐𝑎𝑝 𝐴, 𝐵 < |𝑋|

Define 𝑋𝐴 = 𝑋 ∩ 𝐴, 𝑋𝐵 = 𝑋 ∩ 𝐵, 𝑌𝐴 = 𝑌 ∩ 𝐴

Then, 𝑐𝑎𝑝 𝐴, 𝐵 ≥ 𝑋𝐵 + |𝑌𝐴|

Since min-cut does not use ∞ edges, 𝑁 𝑋𝐴 ⊆ 𝑌𝐴
𝑁 𝑋𝐴 ≤ 𝑌𝐴 ≤ 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋𝐵 = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋 + 𝑋𝐴 < |𝑋𝐴|

12

s t

𝑋𝐴

𝑋𝐵
𝑌𝐵

𝑌𝐴

∞

Applications of Max Flow:

Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph 𝐺 = (𝑉, 𝐸) and two nodes 𝑠 and 𝑡, find the max

number of edge-disjoint 𝑠 − 𝑡 paths.

Def. Two paths are edge-disjoint if they have no edge in

common.

Ex: communication networks.

14

s

2

3

4

5

6

7

t

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from 𝑠 to 𝑡.

Thm. Max number edge-disjoint s-t paths equals max flow value.

Proof. # of disjoint path ≤ maxflow value

Suppose there are 𝑘 edge-disjoint paths 𝑃1, … , 𝑃𝑘.

Set 𝑓(𝑒) = 1 if 𝑒 participates in some path 𝑃𝑖 ; else set 𝑓 𝑒 = 0.

Since paths are edge-disjoint, 𝑓 is a flow of value 𝑘. ▪

15

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.

Pf. # of disjoint path ≥ maxflow val Suppose max flow value is 𝑘

Integrality theorem there exists 0-1 flow 𝑓 of value 𝑘.

Consider edge (𝑠, 𝑢) with 𝑓(𝑠, 𝑢) = 1.

• by conservation, there exists an edge (𝑢, 𝑣) with 𝑓(𝑢, 𝑣) = 1

• continue until reach 𝑡, always choosing a new edge

This produces 𝑘 (not necessarily simple) edge-disjoint paths. ▪

16

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

We can return to u so we can have cycles. But we can eliminate cycles if desired

Applications of Max Flow:

Project Selection

Project Selection

Given a DAG 𝐺 = (𝑉, 𝐸) representing precedence constraints on
tasks (a task points to its predecessors).

• Task 𝑣 ∈ 𝑉 has a profit value 𝑝(𝑣) (can be positive or negative).

Goal: Find a set 𝐴 ⊂ 𝑉 of tasks that

• satisfies the precedence constraints,

• maximizes Profit 𝐴 = σ𝑣∈𝐴 𝑝(𝑣) .

18

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

Each task points to its predecessors

19

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

Extended Graph

20

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

5

10

For each 𝑣

If 𝑝 𝑣 > 0, add 𝑠, 𝑣
edge with capacity 𝑝 𝑣 .

If 𝑝 𝑣 < 0, add (𝑣, 𝑡)
edge with capacity −𝑝(𝑣).

Extended Graph 𝐺′

21

Goal: Set capacities on edges of 𝐺 so that

for minimum 𝑠-𝑡 cut (𝑆, 𝑆) in 𝐺′, the set 𝐴 = 𝑆 − {𝑠}
• satisfies precedence constraints

• has maximum possible profit in 𝐺

To satisfy constraints, don’t want any original edges of 𝐺
cross the minimum cut
• Otherwise, a task in 𝐴 = 𝑆 − {𝑠} had a predecessor not in 𝐴.

How?

Set capacity of each of the edges of 𝐺 to +∞.

Extended Graph 𝐺′

22

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

Extended Graph 𝐺′

Cut 𝐶 ≔ σ𝑣:𝑝 𝑣 >0𝑝 𝑣

C = 11+8+14+4+

10+12+3+4+2

23

-1

4
3

12

10

8

-3

11

-13

14

-5
-6

4

2

s

t

Extended Graph 𝐺′

This edge

doesn’t cross 𝐴

Cut

=13+3+2+3+4

=13+3

+C-4-8-10-11-12-14

Project Selection

Claim: For any 𝑠-𝑡 cut (𝑆, 𝑆) in 𝐺′ with finite capacity,

the set 𝐴 = 𝑆 − {𝑠} satisfies

• precedence constraints and

• has capacity cap 𝑆, 𝑆 = 𝐶 − σ𝑣∈𝐴 𝑝 𝑣 = 𝐶 − Profit 𝐴

Corollary: A minimum 𝑠-𝑡 cut (𝑆, 𝑆) in 𝐺′ yields an optimal

solution 𝐴 = 𝑆 − {𝑠} to the project selection problem

Algorithm:

• Compute maximum flow 𝑓 in 𝐺′

• Find the set 𝑆 of vertices reachable from 𝑠 in 𝐺𝑓
′

• Return 𝑆 − {𝑠}

24

Proof of Claim

• 𝐴 = 𝑆 − {𝑠} satisfies precedence constraints

No edge of 𝐺 crosses forward out of 𝐴 since those edges have

capacity +∞

• Capacity = 𝐶 − Profit 𝐴

Only forward edges cut are of the form

(𝑣, 𝑡) for 𝑣 ∈ 𝐴 or (𝑠, 𝑣) for 𝑣 ∉ 𝐴

The (𝑣, 𝑡) edges for 𝑣 ∈ 𝐴 contribute

σ𝑣∈𝐴:𝑝 𝑣 <0−𝑝(𝑣) = −σ𝑣∈𝐴:𝑝 𝑣 <0𝑝(𝑣)

The (𝑠, 𝑣) edges for 𝑣 ∉ 𝐴 contribute

σ𝑣∉𝐴:𝑝 𝑣 >0𝑝(𝑣) = 𝐶 − σ𝑣∈𝐴:𝑝 𝑣 >0𝑝(𝑣)

Therefore, the total capacity is

𝐶 − σ𝑣:𝑝 𝑣 >0𝑝 𝑣 = 𝐶 − Profit 𝐴
25

Applications of Max Flow:

Image Segmentation

Image Segmentation

Given an image we want to separate

foreground from background

• Important problem in image processing.

• Divide image into coherent regions.

27

Foreground / background segmentation

Label each pixel as foreground/background.

• 𝑉 = set of pixels, 𝐸 = pairs of neighboring pixels.

• 𝑎𝑖 is the original image.

• 𝑎𝑖 ≫ 0 means we prefer to label 𝑖 in foreground.

• 𝑝𝑖,𝑗 ≥ 0 is separation penalty for labeling one of 𝑖

and j as foreground, and the other as background.

Goals:

Find partition (𝑆, 𝑆) that minimizes:

−

𝑖∈𝑆

𝑎𝑖 +

𝑖,𝑗 ∈𝐸

𝑖∈𝑆,𝑗∈𝑆

𝑝𝑖,𝑗

where 𝑆 is the foreground.

28

Min cut Formulation
𝐺′ = (𝑉′, 𝐸′).
Add 𝑠 to correspond to foreground;

Add 𝑡 to correspond to background;

Use two anti-parallel edges instead of undirected edge.

29

𝑝𝑖,𝑗

𝑝𝑖,𝑗

𝑝𝑖,𝑗

s ti j

𝑝𝑖,𝑗

𝑎𝑗 if 𝑎𝑗 > 0

𝐺′

−𝑎𝑗 if 𝑎𝑗 < 0

Min cut Formulation (cont’d)
• Consider min cut (𝑆, 𝑆) in G’. (𝑆 = foreground.)

30

𝑐𝑎𝑝 𝑆, 𝑆 =

𝑖∈𝑆

−𝑎𝑖 1𝑎𝑖<0 +

𝑖∈𝑆

𝑎𝑖 1𝑎𝑖>0 +

𝑖,𝑗 ∈𝐸

𝑖∈𝑆,𝑗∈𝑆

𝑝𝑖,𝑗

= −σ𝑖∈𝑆 𝑎𝑖 + σ𝑖∈𝑆 𝑎𝑖 1𝑎𝑖>0 + σ
𝑖∈𝑆

𝑎𝑖 1𝑎𝑖>0 + σ⋯𝑝𝑖,𝑗
= −σ𝑖∈𝑆 𝑎𝑖 + σ𝑖 𝑎𝑖 + σ⋯𝑝𝑖,𝑗
= −σ𝑖∈𝑆 𝑎𝑖 + σ⋯𝑝𝑖,𝑗 + constant

Precisely, what we want to minimize.

s ti j

𝑝𝑖,𝑗

𝐺′

𝑆

𝑎𝑗 if 𝑎𝑗 > 0

−𝑎𝑗 if 𝑎𝑗 < 0

Remark
• The main difficulty is to come up with a good model.

• May want to have human interaction.

• Segmentation may be real-valued instead of {0,1}.

• There are many more than 1 objects.

• May need labeling.

• Augmenting path is not great for GPU.

31

Edmonds-Karp Algorithm

33

Edmonds-Karp Algorithm

• Use a shortest augmenting path
(via Breadth First Search in residual graph)

• Time: 𝑂(𝑚2𝑛).

t

v

u

x

s

5/9

3/10
0/5

3/3

2/5

t

v

u

x

s

t

v

u

x

s
G Gf Gf’

34

Distance to 𝑠 is non-decreasing.

Let 𝑓 be a flow, 𝐺𝑓 the residual graph, and 𝑃 a shortest augmenting

path. Then no vertex is closer to 𝑠 after augmentation along 𝑃.

Proof: Augmentation along 𝑃 only

• deletes forward edges

no new (hence no shorter) path created

• adds back edges that go to previous vertices along 𝑃
BFS is unchanged, since 𝑣 visited before (𝑢, 𝑣) examined

s

v

u

a back edge

35

Distance for bottleneck edges

Shortest s-t path P in Gf

vus x tw
cP

cP>cP >cP

bottleneck edge

𝑑𝑓 𝑠, 𝑣 = 𝑑𝑓 𝑠, 𝑢 + 1 since this is a shortest pathAfter augmenting along 𝑃

>0 >0
vus x tw

For (𝑢, 𝑣) to be bottleneck again for some flow 𝑓′

vus x tw

𝑑𝑓′ 𝑠, 𝑢 = 𝑑𝑓′ 𝑠, 𝑣 + 1 ≥ 𝑑𝑓 𝑠, 𝑣 + 1 = 𝑑𝑓 𝑠, 𝑢 + 2

Let 𝑑𝑓(𝑠, 𝑣) be the distance from 𝑠 to 𝑣 on 𝐺𝑓.

36

Theorem

Edmonds-Karp performs 𝑂(𝑚𝑛) flow augmentations

Proof:

• Each step, some edge disappear from 𝐺𝑓.
(Note however that some edge may reappear.)

• Any edge (𝑢, 𝑣) disappears from 𝐺𝑓 at most 𝑛/2 times.
(because the distance increased by 2 every disappearance.)

• There are at most 𝑚𝑛/2 disappearances.

Total time is 𝑂(𝑚2𝑛).

