CSE 421

Application of Max Flow

Yin Tat Lee

Applications of Max Flow: Bipartite Matching

Maximum Matching Problem

Given an undirected graph $G=(V, E)$.
A set $M \subseteq E$ is a matching if each vertex appears in at most 1 edge in M.
Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bipartite graph $G=(X \cup Y, E)$
A set $M \subseteq E$ is a matching if each vertex appears in at most 1 edge in M.
Goal: find a matching with largest cardinality.

Bipartite Matching using Max Flow

Create digraph H as follows:

- Orient all edges from X to Y and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in X.
- Add sink t, and unit capacity edges from each node in Y to t.

H

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G=$ value of max flow in H.
Pf. (matching val \leq maxflow val)
Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k edges of M. f is a flow and has cardinality k.

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G=$ value of max flow in H.
Pf. (of matching val \geq flow val) Let f be a max flow in H of value k. Integrality theorem $\Rightarrow k$ is integral and we can assume f is $0-1$.
Consider $M=$ set of edges from X to Y with $f(e)=1$.

- each node in X and Y participates in at most one edge in M
- $|M|=k$ because the flow from $s \cup X$ to $Y \cup t$ equals to the flow value k.

Applications of Max Flow: Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching $M \subset E$ is perfect if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

- Clearly we must have $|X|=|Y|$.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Bipartite Matching: N(S)

Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subset X$. Pf. Each $v \in S$ has to be matched to a unique node in $N(S)$.

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G=(X \cup Y, E)$ be a bipartite graph with $|X|=|Y|$.
Then, G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow
This was the previous observation.
If $|N(S)|<|S|$ for some S, then there is no perfect matching.

Marriage Theorem

Pf. $\exists S \subseteq X$ s.t., $|N(S)|<|S| \Leftarrow G$ does not a perfect matching
Formulate as a max-flow and let (A, B) be the min s-t cut
G has no perfect matching $=>v\left(f^{*}\right)<|X|$. So, $\operatorname{cap}(A, B)<|X|$
Define $X_{A}=X \cap A, X_{B}=X \cap B, Y_{A}=Y \cap A$
Then, $\operatorname{cap}(A, B) \geq\left|X_{B}\right|+\left|Y_{A}\right|$
Since min-cut does not use ∞ edges, $N\left(X_{A}\right) \subseteq Y_{A}$ $\left|N\left(X_{A}\right)\right| \leq\left|Y_{A}\right| \leq \operatorname{cap}(A, B)-\left|X_{B}\right|=\operatorname{cap}(A, B)-|X|+\left|X_{A}\right|<\left|X_{A}\right|$

Applications of Max Flow: Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint $s-t$ paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Proof. \# of disjoint path \leq maxflow value
Suppose there are k edge-disjoint paths P_{1}, \ldots, P_{k}.
Set $f(e)=1$ if e participates in some path P_{i}; else set $f(e)=0$.
Since paths are edge-disjoint, f is a flow of value k. •

Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value. Pf. \# of disjoint path \geq maxflow val Suppose max flow value is k Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
Consider edge (s, u) with $f(s, u)=1$.

- by conservation, there exists an edge (u, v) with $f(u, v)=1$
- continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.

Applications of Max Flow: Project Selection

Project Selection

Given a DAG $G=(V, E)$ representing precedence constraints on tasks (a task points to its predecessors).

- Task $v \in V$ has a profit value $p(v)$ (can be positive or negative).

Goal: Find a set $A \subset V$ of tasks that

- satisfies the precedence constraints,
- maximizes $\operatorname{Profit}(A)=\sum_{v \in A} p(v)$.

Extended Graph

(s)

(1)

Extended Graph G^{\prime}

For each v
If $p(v)>0$, add (s, v) edge with capacity $p(v)$.

If $p(v)<0$, add (v, t) edge with capacity $-p(v)$.

Extended Graph G^{\prime}

Goal: Set capacities on edges of G so that for minimum $s-t$ cut (S, \bar{S}) in G^{\prime}, the set $A=S-\{s\}$

- satisfies precedence constraints
- has maximum possible profit in G

To satisfy constraints, don't want any original edges of G cross the minimum cut

- Otherwise, a task in $A=S-\{s\}$ had a predecessor not in A.

How?
Set capacity of each of the edges of G to $+\infty$.

Extended Graph G^{\prime}

Extended Graph G^{\prime}

Project Selection

Claim: For any $s-t$ cut (S, \bar{S}) in G^{\prime} with finite capacity, the set $A=S-\{s\}$ satisfies

- precedence constraints and
- has capacity $\operatorname{cap}(S, \bar{S})=C-\sum_{v \in A} p(v)=C-\operatorname{Profit}(A)$

Corollary: A minimum $s-t$ cut (S, \bar{S}) in G^{\prime} yields an optimal solution $A=S-\{s\}$ to the project selection problem

Algorithm:

- Compute maximum flow f in G^{\prime}
- Find the set S of vertices reachable from s in G_{f}^{\prime}
- Return S - $\{s\}$

Proof of Claim

- $A=S-\{s\}$ satisfies precedence constraints

No edge of G crosses forward out of A since those edges have capacity $+\infty$

- Capacity $=C-\operatorname{Profit}(A)$

Only forward edges cut are of the form

$$
(v, t) \text { for } v \in A \text { or }(s, v) \text { for } v \notin A
$$

The (v, t) edges for $v \in A$ contribute

$$
\sum_{v \in A: p(v)<0}-p(v)=-\sum_{v \in A: p(v)<0} p(v)
$$

The (s, v) edges for $v \notin A$ contribute

$$
\sum_{v \notin A: p(v)>0} p(v)=C-\sum_{v \in A: p(v)>0} p(v)
$$

Therefore, the total capacity is

$$
C-\sum_{v: p(v)>0} p(v)=C-\operatorname{Profit}(A)
$$

Applications of Max Flow: Image Segmentation

Image Segmentation

Given an image we want to separate foreground from background

- Important problem in image processing.
- Divide image into coherent regions.

Foreground / background segmentation

Label each pixel as foreground/background.

- $V=$ set of pixels, $E=$ pairs of neighboring pixels.
- a_{i} is the original image.
- $a_{i} \gg 0$ means we prefer to label i in foreground.
- $p_{i, j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals:
Find partition (S, \bar{S}) that minimizes:

$$
-\sum_{i \in S} a_{i}+\sum_{\substack{(i, j) \in E \\ i \in S, j \in \bar{S}}} p_{i, j}
$$

where S is the foreground.

Min cut Formulation

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
Add s to correspond to foreground; Add t to correspond to background; Use two anti-parallel edges instead of undirected edge.

Min cut Formulation (cont'd)

- Consider min cut (S, \bar{S}) in G^{\prime}. ($S=$ foreground.)

$$
\begin{aligned}
& \operatorname{cap}(S, \bar{S})=\sum_{i \in S}-a_{i} 1_{a_{i}<0}+\sum_{i \in \bar{S}} a_{i} 1_{a_{i}>0}+\sum_{\substack{(i, j) \in E \\
i \in S, j \in \bar{S}}} p_{i, j} \\
& =-\sum_{i \in S} a_{i}+\sum_{i \in S} a_{i} 1_{a_{i}>0}+\sum_{i \in \bar{S}} a_{i} 1_{a_{i}>0}+\sum_{\ldots} p_{i, j} \\
& =-\sum_{i \in S} a_{i}+\sum_{i} a_{i}+\sum_{\ldots} \ldots p_{i, j} \\
& =-\sum_{i \in S} a_{i}+\sum_{\ldots} p_{i, j}+\text { constant }
\end{aligned}
$$

Precisely, what we want to minimize.

Remark

- The main difficulty is to come up with a good model.
- May want to have human interaction.

- Segmentation may be real-valued instead of $\{0,1\}$.
- There are many more than 1 objects.
- May need labeling.
- Augmenting path is not great for GPU.

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: $O\left(m^{2} n\right)$.

Distance to s is non-decreasing.

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only

- deletes forward edges no new (hence no shorter) path created
- adds back edges that go to previous vertices along P BFS is unchanged, since v visited before (u, v) examined

Distance for bottleneck edges

Let $d_{f}(s, v)$ be the distance from s to v on G_{f}.
Shortest s-t path \mathbf{P} in \mathbf{G}_{f}

bottleneck edge
After augmenting along P d $\quad d_{f}(s, v)=d_{f}(s, u)+1$ since this is a shortest path

For (u, v) to be bottleneck again for some flow f^{\prime}

$$
d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1 \geq d_{f}(s, v)+1=d_{f}(s, u)+2
$$

Theorem

Edmonds-Karp performs $O(\mathrm{mn})$ flow augmentations
Proof:

- Each step, some edge disappear from G_{f}. (Note however that some edge may reappear.)
- Any edge (u, v) disappears from G_{f} at most $n / 2$ times. (because the distance increased by 2 every disappearance.)
- There are at most $m n / 2$ disappearances.

Total time is $O\left(m^{2} n\right)$.

