CSE 421

Application of Max Flow

Yin Tat Lee

Applications of Max Flow:
Bipartite Matching

Maximum Matching Problem

Given an undirected graph ¢ = (V, E).

A set M c€ E is a matching if each vertex appears in at most 1
edge in M.

Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bipartite graph ¢ = (X UY,E)

A set M c€ E is a matching if each vertex appears in at most 1
edge in M.

Goal: find a matching with largest cardinality.

@ @
@ @
3 ®

S
e.

@ ©
<

Bipartite Matching using Max Flow

Create digraph H as follows:

» Orient all edges from X to Y and assign infinite (or unit) capacity.
« Add source s, and unit capacity edges from s to each node in X.
« Add sink t, and unit capacity edges from each node in Y to t.

H

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in ¢ = value of max flow in H.
Pf. (matching val < maxflow val)

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k edges of M.

f is a flow and has cardinality k.

@ H
2) 1

>(3) t
@

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in ¢ = value of max flow in H.

Pf. (of matching val = flow val) Let f be a max flow in H of value k.
Integrality theorem = k is integral and we can assume f is 0-1.
Consider M = set of edges from X to Y with f(e) = 1.

 each node in X and Y participates in at most one edge in M

e |M| = k because the flow from s U X to Y U t equals to the flow valée k.

Applications of Max Flow:
Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching M c E is perfect if each node appears in
exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
* Clearly we must have |X| = |Y].

« What other conditions are necessary?

« What conditions are sufficient?

Perfect Bipartite Matching: N(S)

N(S)

Def. Let S be a subset of nodes, S
and let N(S) be the set of nodes O
adjacent to nodes in S. O

Observation. If a bipartite graph G has a
perfect matching, then |[N(S)| = |S]| for all subsets S c X.
Pf. Each v € S has to be matched to a unique node in N(S).

N(S)

10

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] LetG = (XUY,FE) be a
bipartite graph with |X| = |Y].

Then, G has a perfect matching iff [N(S)| = |S| for all
subsets S € X.

Pf. =
This was the previous observation.

If IN(S)| < |S| for some S, then there is no perfect
matching.

11

Marriage Theorem

Pf. 3Ssc X s.t., IN(S)| < |S| & G does not a perfect matching
Formulate as a max-flow and let (4, B) be the min s-t cut

G has no perfect matching => v(f*) < |X|. So, cap(4,B) < |X]
Define X, =XNAXg=XNnB,Y,=YNA

Then, cap(A,B) = |Xg| + |Y4]

Since min-cut does not use oo edges, N(X,) € Y,
IN(Xp)| < |Y4| < cap(A,B) — |Xg| = cap(4,B) — |X| + [Xa| < |X4]

Xp

|

00)

e

H

H

N
Yp

~

Yy
12

Applications of Max Flow:
Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph ¢ = (V, E) and two nodes s and t, find the max
number of edge-disjoint s — t paths.

Def. Two paths are edge-disjoint if they have no edge in
common.

Ex: communication networks.

14

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Proof. # of disjoint path < maxflow value

Suppose there are k edge-disjoint paths Py, ..., Py.

Set f(e) = 1 if e participates in some path P; ; else set f(e) = 0.
Since paths are edge-disjoint, f is a flow of value k. =

15

Max Flow Formulation

. 1/?\1
1\é \a

@<1
L

Thm. Max number edge-d|SJomt s-t paths equals max flow value.
Pf. # of disjoint path = maxflow val Suppose max flow value is k
Integrality theorem = there exists 0-1 flow f of value k.
Consider edge (s,u) with f(s,u) = 1.

* by conservation, there exists an edge (u,v) with f(u,v) =1

« continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths. =
p (sarily simple) edge-disjoint p

We can return to u so we can have cycles. But we can eliminate cycles if desired

AR
T

— = —

16

Applications of Max Flow:
Project Selection

Project Selection

Given a DAG G = (V, E) representing precedence constraints on
tasks (a task points to its predecessors).

« Task v € V has a profit value p(v) (can be positive or negative).

Goal: Find a set A c V of tasks that
 satisfies the precedence constraints, j

« maximizes Profit(4) =Y e p(V). / \@

[Each task points to its predecessors] 18

Extended Graph

®

/I\@\ / @\.

19

Extended Graph G’

For each v

If p(v) > 0, add (s, v)
edge with capacity p(v).

If p(v) < 0, add (v, t)
edge with capacity —p(v).

20

Extended Graph G’

Goal: Set capacities on edges of ¢ so that

for minimum s-t cut (S,S) in G', the set A = S — {s}
« satisfies precedence constraints

* has maximum possible profitin G

To satisfy constraints, don’'t want any original edges of G
cross the minimum cut

* Otherwise, ataskin A =S — {s} had a predecessor not in A.

How?
Set capacity of each of the edges of ¢ to +oo.

21

Extended Graph G’

S

Cut C = Zv:p(v)>0 p(v) }K\
C = 11+8+14+4+ @2 :

10+12+3+4+2 |&y*

N
5 [N
! | @

@/

N\
22

Extended Graph G’

Cut

=13+3+2+3+4

=13+3
+C-4-8-10-11-12-14

This edge
doesn’t cross 4

23

Project Selection

Claim: For any s-t cut (S,S) in G' with finite capacity,
the set A = S — {s} satisfies
« precedence constraints and

- has capacity cap(S,S) = C — Y,eap(v) = C — Profit(4)

Corollary: A minimum s-t cut (S, S) in G’ yields an optimal
solution A = S — {s} to the project selection problem

Algorithm:

« Compute maximum flow f in G’

* Find the set S of vertices reachable from s in G}
 Return § — {s}

24

Proof of Claim

e A =S5 —{s} satisfies precedence constraints

No edge of G crosses forward out of A since those edges have
capacity +oo

« Capacity = C — Profit(A4)
Only forward edges cut are of the form
(v,t)forveAdor(s,v)forv & A
The (v, t) edges for v € A contribute
ZvEA:p(v)<0 —p(v) = — ZvEA:p(v)<O p(v)
The (s,v) edges for v € A contribute
ZveA:p(v)>O p(v) =(- ZvEA:p(v)>0 p(U)
Therefore, the total capacity is
C — 2ppw)>oP(v) = C — Profit(A)

25

Applications of Max Flow:
Image Segmentation

Image Segmentation

Given an image we want to separate
foreground from background

« |mportant problem in image processing.
« Divide image into coherent regions.

27

Foreground / background segmentation

Label each pixel as foreground/background.

e I/ =set of pixels, E = pairs of neighboring pixels.
e q; Is the original image. o il
e a; » 0 means we prefer to label i in foreground. o

e p;; = 0 Is separation penalty for labeling one of i
and j as foreground, and the other as background.

Goals:
Find partition (S, S) that minimizes:
—Z a; + z Di j
IES (i,j)EE
i€S,jES
where S is the foreground.

28

Min cut Formulation

¢ = (V,E).

Add s to correspond to foreground,

Add t to correspond to background;

Use two anti-parallel edges instead of undirected edge.

O——npn; —O

p .’ .
bi,j -
N— 21 pi’]

e ®

—Cl]' |f Clj <0

Gl
o W W w .

Min cut Formulation (cont'd)

« Consider min cut (S,5) in G'. (S = foreground.)

cap(5,5) =Y ~ailaeot ¥ Glasot ¥ Py

i€S i€S (i,j)EE
i€S,jES

= —Qies @i + Xies Qi lg;>0 + Zieg a;lg;>0 + Z---Pi,j

— ZiES a; + Zi a; + Z p,;,j

= — Xies @; + X...p; j + constant
Precisely, what we want to minimize.

GI

&

aj |f aj >0
,\Ui @

S

®

t@d

30

Remark

The main difficulty is to come up with a good model.
May want to have human interaction.

Segmentation may be real-valued instead of {0,1}.
There are many more than 1 objects.
May need labeling.

Augmenting path is not great for GPU.

31

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

« Use a shortest augmenting path

(via Breadth First Search in residual graph)

e Time: 0(m?n).

33

Distance to s IS non-decreasing.

Let / be a flow, G, the residual graph, and P a shortest augmenting
path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only
» deletes forward edges
no new (hence no shorter) path created

« adds back edges that go to previous vertices along P
BFS is unchanged, since v visited before (u, v) examined

34

Distance for bottleneck edges

Let ds (s, v) be the distance from s to v on Gy.

Shortest s-t path P in G;

>Cp,

--->EF.’@C—P>@ﬂ _.®—E>@—> ----- —®

bottleneck edge

After augmenting along P

de(s,v) = dg(s,u) + 1 since this is a shortest path

>0 S
O S P — O

For (u, v) to be bottleneck again for some flow f'

L)
. .t
. *
* e®
L 4 P
L 4 Py
* s
llllll

der(s,u) =der(s,v) + 1= de(s,v) + 1 =dp(s,u) + 2

35

Theorem

Edmonds-Karp performs 0 (mn) flow augmentations

Proof:

 Each step, some edge disappear from G¢.
(Note however that some edge may reappear.)

* Any edge (u,v) disappears from Gy at most n/2 times.
(because the distance increased by 2 every disappearance.)
« There are at most mn/2 disappearances.

Total time is 0(m?n).

36

