CSE 421

Max Flow Algorithms

Yin Tat Lee

Notations

Given a directed graph G with integral capacity $0 \leq c_{e} \leq U$. Input size is $O(m \log U)$.

We call a runtime

- $(m U)^{O(1)}$ is pseudo polynomial.
- $(m \log U)^{O(1)}$ is weakly polynomial.
- $m^{O(1)}$ is strongly polynomial.

Ford Fulkerson takes $O(m F)=O(m n U)$. (Pseudo Polynomial).
Dependence on U is bad because U can be much larger than m.

Weakly polynomial: Capacity Scaling

Question: How to improve U dependence?
Idea: Handle edges with large capacity first.

Capacity Scaling

Let $G_{f}(D)$ be the residual G_{f} with all edges $<D$ capacity removed.
Algorithm:

- Set $D=U$
- While $D \geq 1$
- While there is $s-t$ path p in $G_{f}(D)$
- Augment along p by lowest edge capacity in $G_{f}(D)$
- Set $D \leftarrow\lfloor D / 2\rfloor$

Correctness:
When $D=1$, the inner loop is simply Ford Fulkerson.
Hence, at termination, we have a maxflow.

Capacity Scaling

Capacity Scaling

Capacity Scaling Bit 1

Capacity on each edge is at most 1 (either 0 or 1 times $\Delta=4$)

Capacity Scaling Bit 1

O(nm) time

Capacity Scaling Bit 2

Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=2$)

Capacity Scaling Bit 2

Residual capacity across min cut is at most m
$\Rightarrow \leq \mathrm{m}$ augmentations

Capacity Scaling Bit 3

Residual capacity across min cut is at most m (either 0 or $\mathbf{1}$ times $\Delta=1$)

Capacity Scaling Bit 3

After $\leq \mathbf{m}$ augmentations

Capacity Scaling Final

Capacity Scaling

Lemma: When the inner loop terminates for some D,

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+D m
$$

Proof:
When the inner loop terminates, there is no s - t path in $G_{f}(D)$. Let S be the set of vertices reachable from s in $G_{f}(D)$. Note that $\operatorname{cap}(S, \bar{S}) \leq \operatorname{val}(f)+D m$. Hence, $\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+D m$.

Capacity Scaling

Corollary: Inner loop takes $O(m)$ steps.
Proof:
Each step, val(f) is increased by at least D.
But val $\left(f^{*}\right) \leq \operatorname{val}(f)+2 D m$ at the beginning. Hence, there are at most $2 m$ steps.

Theorem: Capacity scaling takes $O\left(m^{2} \log U\right)$ time.
Proof:
Outer loop has $O(\log U)$ steps. Inner loop has $O(m)$ steps.
Each step takes $O(m)$ time.

```
Algorithm:
Set D=U
While D\geq1
    \circWhile there is s-t path p in G}\mp@subsup{G}{f}{}(D
```

 -Augment along \(p\) by lowest edge capacity in \(G_{f}(D)\)
 \(\circ D \leftarrow\lfloor D / 2\rfloor\)

Strongly polynomial: Edmonds-Karp Algorithm

Question: Can we pick better paths to augment?
Idea: Shortest Path!

Edmonds-Karp Algorithm

Use a shortest augmenting path
 (via Breadth First Search in residual graph)

Lemma:
Let f be a flow and P a shortest augmenting path.
Then no vertex is closer to s in G_{f} after augmentation along P.

Proof: Augmentation along P only

- deletes forward edges no new (hence no shorter) path created

- adds back edges that go to previous vertices along P BFS is unchanged, since v visited before (u, v) examined

Theorem

Edmonds-Karp performs $O(m n)$ flow augmentations
Proof:
Call (u, v) critical for augmenting path P if it's closest to s with min residual capacity.
It will disappear from G_{f} after augmenting along P.
For (u, v) to be critical again, the (u, v) edge must reappear in G_{f} but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s so each edge critical at most $n / 2$ times.

Corollary: Total time is $O\left(m^{2} n\right)$.

Distance for bottleneck edges

Let $d_{f}(s, v)$ be the distance from s to v on G_{f}.
Shortest s-t path P in G_{f}

After augmenting along P d $d_{f}(s, v)=d_{f}(s, u)+1$ since this is a shortest path

For (u, v) to be bottleneck again for some flow f^{\prime}

$$
d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1 \geq d_{f}(s, v)+1=d_{f}(s, u)+2
$$

Faster Strongly polynomial: Dinic algorithm

Question: What is better than 1 shortest paths?

Idea: Multiple Shortest Paths!

Dinic's algorithm

Send as many shortest paths as possible at the same time.

Keep on forward edges

Dinic's algorithm

Let f be some flow.
The level graph L_{f} is the graph with edges given by

$$
\left\{(u, v) \in G_{f}: d_{G_{f}}(s, v)=d_{G_{f}}(s, u)\right\}
$$

We call f^{\prime} is a blocking flow in L_{f} if

$$
\left\{e \in L_{f}: f^{\prime}(e)<c_{G_{f}}(e)\right\} \text { has no } s-t \text { path. }
$$

Algorithm:

- $f=0$
- While there is s - t path p in G_{f}
- Compute the level graph L_{f}
- Find a blocking flow f^{\prime}.
- Update $f \leftarrow f+f^{\prime}$.

Dinic's algorithm

Send as many shortest paths as possible at the same time.

(

Dinic's algorithm

Lemma: $d_{G_{f}}(s, t)$ increase every iteration.
Proof (Draft):
If distance doesn't change, a shortest path on the new graphs must be on the level graph.
But there is no s-t path in the level graph after sending the blocking flow.

Corollary: There are at most n iterations.
Proof:
s - t distance is bounded by n and is increased by 1 every step.

We can find blocking flow in $O(\mathrm{mn})$ time picking path 1 by 1. Hence, Dinic's algorithm takes $O\left(m n^{2}\right)$ time.

Link Cut Tree

There are a data structure that supports the following.

- make_tree(): Return a new vertex in a singleton tree.
- link(v,w,x): Make vertex va new child of vertex w. Set the edge capacity to x.
- cut(v): Delete the edge between v and its parent.
- find_root (v) - Return the root of the tree that contains v.
- find_min(v) - Return the edge with minimum capacity on the v-root path.
- subtract (v, x) - Subtract x from the capacity on the v -root path. Furthermore, all steps takes $O(\log n)$ time.

With this, we can send a flow in $O(\log n)$ time in the level graph. Hence, Dinic's algorithm takes $O(m n \log n)$ time.

Can we do it even faster?

Runtimes...

Previous Best: $\tilde{O}\left(\min \left(m^{1.5}, m n^{2 / 3}\right)\right)$ [Even-Tarjan 75, Goldberg-Rao 89]
Unfortunately, this slide was made in 2011 (during my undergrad).
Undirected graph
$m n^{1 / 3} / \epsilon^{11 / 3}$ [Christiano-Kelner-Madry-Spielman-Teng 2011] $m n^{1 / 3} / \epsilon^{2 / 3}$ [Lee-Rao-Srivastava 2013]
m / ϵ^{2} [Sherman 2013, Kelner-Lee-Orecchia-Sidford 2014] m / ϵ [Sherman 2017]
$m+\sqrt{m n} / \epsilon$ [Sidford-Tian 2020]
Directed graph
$m^{10 / 7} U^{1 / 7}$ [Madry 2013, Madry 2016]
$m \sqrt{n}$ [Lee-Sidford 2013]
$m^{11 / 8} U^{1 / 4}$ [Liu-Sidford 2020]
$m^{4 / 3} U^{1 / 3}$ [Liu-Sidford 2020, Kathuria 2020]
$m+n^{1.5}$ [Brand-Lee-Liu-Saranurak-Sidford-Song-Wang 2021]
$m^{3 / 2-1 / 328}$ [Gao-Liu-Peng 2021]
$m^{3 / 2-1 / 58}$ [Brand-Gao-Jambulapati-Lee-Liu-Peng-Sidford 2021]

Shortest Path and Maxflow?

Given an undirected graph with unit capacity and unit length.

What is the relation between shortest path and maxflow?

Let \mathcal{F} be the set of $s-t$ flow with value 1 .
Shortest path problem: $\underset{f \in \mathcal{F}}{ }\|f\|_{1}$.
Maxflow problem: $\min _{f \in \mathcal{F}}\|f\|_{\infty}$.
Solving maxflow via shortest path is like using ℓ_{1} problem to approximate ℓ_{∞} problem.

Shortest Path and Maxflow?

Fact: $\min _{f \in \mathcal{F}}\|f\|_{2}$ can be solved in $O(m \log m)$ time.
[Spielman-Teng 2003]

Instead of augmenting using shortest path,
"augment" using ℓ_{2} flow.
This gives $m \sqrt{n}$ time algorithm. (2014)

Approximate Graphs with Sparse Graphs

Every graph G can be approximated by a sparse graph G^{\prime} :

- G^{\prime} has $O(n)$ edges
- $\operatorname{cap}_{G}(S, \bar{S})=\left(1 \pm \frac{1}{2}\right) \operatorname{cap}_{G^{\prime}}(S, \bar{S})$ for all set S.

Using this, one can "find" the augmenting path on the sparse graph.
This gives $m+n^{3 / 2}$ time algorithm. (2020)

Creating shortcut in the graph

Instead of looking at all vertices all the time, we can random sample some vertices and shortcut the graph.

This gives $m^{3 / 2-1 / 58}$ time algorithm. (2022)

How about simpler graphs?

Many graphs in practice has structures.

One common class is planar graphs.

For these graphs,

- we can solve maxflow in nearly linear time (2009)
- we can solve mincost flow in nearly linear time (2022)

Sally Dong

Guanghao Ye (was a 421 student)

