
CSE 421

Max Flow Algorithms

Yin Tat Lee

1

Notations

Given a directed graph 𝐺 with integral capacity 0 ≤ 𝑐𝑒 ≤ 𝑈.

Input size is 𝑂(𝑚 log𝑈).

We call a runtime

• 𝑚𝑈 𝑂(1) is pseudo polynomial.

• 𝑚 log𝑈 𝑂(1) is weakly polynomial.

• 𝑚𝑂(1) is strongly polynomial.

Ford Fulkerson takes 𝑂 𝑚𝐹 = 𝑂(𝑚𝑛𝑈). (Pseudo Polynomial).

Dependence on 𝑈 is bad because 𝑈 can be much larger than 𝑚.

2

Weakly polynomial:

Capacity Scaling

Question: How to improve 𝑈 dependence?

Idea: Handle edges with large capacity first.

Capacity Scaling

Let 𝐺𝑓(𝐷) be the residual 𝐺𝑓 with all edges < 𝐷 capacity removed.

Algorithm:

• Set 𝐷 = 𝑈
• While 𝐷 ≥ 1

o While there is 𝑠-𝑡 path 𝑝 in 𝐺𝑓(𝐷)

▪ Augment along 𝑝 by lowest edge capacity in 𝐺𝑓(𝐷)

o Set 𝐷 ← 𝐷/2

Correctness:

When 𝐷 = 1, the inner loop is simply Ford Fulkerson.

Hence, at termination, we have a maxflow.

4

5

5

6

7

4

3

4

1

5

3

7

64

s

a

b

c

x

y

z

t

Capacity Scaling

6

101

110

111

100

011

100

001

101

011

111

110100

s

a

b

c

x

y

z

t

Capacity Scaling

7

101

110

111

100

011

100

001

101

011

111

110100

s

a

b

c

x

y

z

t

Capacity on each edge is at most 1

(either 0 or 1 times =4)

Capacity Scaling Bit 1

8

1/111

101

1/110

100

011

1/100

001

1/101

011

1/111

1/110100

s

a

b

c

x

y

z

t

O(nm) time

Capacity Scaling Bit 1

9

101

10/110

10/111

100

011

10/100

001

10/101

011

10/111

10/110100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

(either 0 or 1 times =2)

Capacity Scaling Bit 2

10

10/101

10/110

10/111

01/100

01/011

10/100

001

10/101

01/011

11/111

10/110100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

 m augmentations

Capacity Scaling Bit 2

11

100/101

100/110

010/100

010/011

100/100

001

100/101

010/011

110/111

100/110100

s

a

b

c

x

y

z

t

Residual capacity across min cut is at most m

(either 0 or 1 times =1)

100/111

Capacity Scaling Bit 3

12

101/101

101/110

010/100

011/011

100/100

001/001

101/101

010/011

111/111

110/110100

s

a

b

c

x

y

z

t
101/111

After m augmentations

Capacity Scaling Bit 3

13

5/5

5/6

2/4

3/3

4/4

1/1

5/5

2/3

7/7

6/64

s

a

b

c

x

y

z

t
5/7

Capacity Scaling Final

Capacity Scaling

Lemma: When the inner loop terminates for some 𝐷,

𝑣𝑎𝑙 𝑓∗ ≤ 𝑣𝑎𝑙 𝑓 + 𝐷𝑚

Proof:
When the inner loop terminates, there is no 𝑠-𝑡 path in 𝐺𝑓(𝐷).
Let 𝑆 be the set of vertices reachable from 𝑠 in 𝐺𝑓(𝐷).
Note that 𝑐𝑎𝑝 𝑆, 𝑆 ≤ 𝑣𝑎𝑙 𝑓 + 𝐷𝑚.

Hence, 𝑣𝑎𝑙 𝑓∗ ≤ 𝑣𝑎𝑙 𝑓 + 𝐷𝑚.

14

Capacity Scaling

Corollary: Inner loop takes 𝑂(𝑚) steps.

Proof:

Each step, 𝑣𝑎𝑙(𝑓) is increased by at least 𝐷.

But 𝑣𝑎𝑙 𝑓∗ ≤ 𝑣𝑎𝑙 𝑓 + 2𝐷𝑚 at the beginning.

Hence, there are at most 2𝑚 steps.

Theorem: Capacity scaling takes 𝑂(𝑚2 log𝑈) time.

Proof:

Outer loop has 𝑂(log𝑈) steps.

Inner loop has 𝑂(𝑚) steps.

Each step takes 𝑂(𝑚) time.

15

Algorithm:

Set 𝐷 = 𝑈

While 𝐷 ≥ 1

oWhile there is 𝑠-𝑡 path 𝑝 in 𝐺𝑓 𝐷

oAugment along 𝑝 by lowest edge capacity in 𝐺𝑓(𝐷)

o𝐷 ← 𝐷/2

Strongly polynomial:

Edmonds-Karp Algorithm

Question: Can we pick better paths to augment?

Idea: Shortest Path!

17

Edmonds-Karp Algorithm

Use a shortest augmenting path
(via Breadth First Search in residual graph)

Lemma:

Let 𝑓 be a flow and 𝑃 a shortest augmenting path.

Then no vertex is closer to 𝑠 in 𝐺𝑓 after augmentation along 𝑃.

Proof: Augmentation along 𝑃 only

• deletes forward edges

no new (hence no shorter) path created

• adds back edges that go to previous vertices along 𝑃
BFS is unchanged, since 𝑣 visited before (𝑢, 𝑣) examined

s

v

u

a back edge

18

Theorem

Edmonds-Karp performs 𝑂(𝑚𝑛) flow augmentations

Proof:

Call 𝑢, 𝑣 critical for augmenting path 𝑃 if it’s closest to 𝑠
with min residual capacity.

It will disappear from 𝐺𝑓 after augmenting along 𝑃.

For (𝑢, 𝑣) to be critical again, the (𝑢, 𝑣) edge must re-
appear in 𝐺𝑓 but that will only happen when the distance
to 𝑢 has increased by 2 (next slide)

It won’t be critical again until farther from 𝑠 so each edge
critical at most 𝑛/2 times.

Corollary: Total time is 𝑂(𝑚2𝑛).

19

Distance for bottleneck edges

Shortest s-t path 𝑃 in 𝐺𝑓

vus x tw
cP

cP>cP >cP

bottleneck edge

𝑑𝑓 𝑠, 𝑣 = 𝑑𝑓 𝑠, 𝑢 + 1 since this is a shortest pathAfter augmenting along 𝑃

>0 >0
vus x tw

For (𝑢, 𝑣) to be bottleneck again for some flow 𝑓′

vus x tw

𝑑𝑓′ 𝑠, 𝑢 = 𝑑𝑓′ 𝑠, 𝑣 + 1 ≥ 𝑑𝑓 𝑠, 𝑣 + 1 = 𝑑𝑓 𝑠, 𝑢 + 2

Let 𝑑𝑓(𝑠, 𝑣) be the distance from 𝑠 to 𝑣 on 𝐺𝑓.

Faster Strongly polynomial:

Dinic algorithm

Question: What is better than 1 shortest paths?

Idea: Multiple Shortest Paths!

21

Dinic’s algorithm

Send as many shortest paths as possible at the same time.

𝐺

𝐺𝑓

Keep on

forward edges

distance to 𝑠

22

Dinic’s algorithm

Let 𝑓 be some flow.

The level graph 𝐿𝑓 is the graph with edges given by

{ 𝑢, 𝑣 ∈ 𝐺𝑓: 𝑑𝐺𝑓 𝑠, 𝑣 = 𝑑𝐺𝑓 𝑠, 𝑢 }

We call 𝑓′ is a blocking flow in 𝐿𝑓 if

{𝑒 ∈ 𝐿𝑓: 𝑓
′ 𝑒 < 𝑐𝐺𝑓 𝑒 } has no 𝑠-𝑡 path.

Algorithm:

• 𝑓 = 0
• While there is 𝑠-𝑡 path 𝑝 in 𝐺𝑓

o Compute the level graph 𝐿𝑓
o Find a blocking flow 𝑓′.
o Update 𝑓 ← 𝑓 + 𝑓′.

23

Dinic’s algorithm

Send as many shortest paths as possible at the same time.
𝐺

𝐺𝑓

𝐿𝑓

24

Dinic’s algorithm

Lemma: 𝑑𝐺𝑓(𝑠, 𝑡) increase every iteration.

Proof (Draft):

If distance doesn’t change, a shortest path on the new graphs

must be on the level graph.

But there is no s-t path in the level graph after sending the

blocking flow.

Corollary: There are at most 𝑛 iterations.

Proof:

𝑠-𝑡 distance is bounded by 𝑛 and is increased by 1 every step.

We can find blocking flow in 𝑂(𝑚𝑛) time picking path 1 by 1.

Hence, Dinic’s algorithm takes 𝑂(𝑚𝑛2) time.

25

Link Cut Tree

There are a data structure that supports the following.

• make_tree(): Return a new vertex in a singleton tree.

• link(v,w,x): Make vertex v a new child of vertex w. Set the

edge capacity to x.

• cut(v): Delete the edge between v and its parent.

• find_root(v) – Return the root of the tree that contains v.

• find_min(v) – Return the edge with minimum capacity on the

v-root path.

• subtract(v,x) – Subtract x from the capacity on the v-root path.

Furthermore, all steps takes 𝑂(log 𝑛) time.

With this, we can send a flow in 𝑂(log 𝑛) time in the level graph.

Hence, Dinic’s algorithm takes 𝑂(𝑚𝑛 log 𝑛) time.

Can we do it even faster?

• log
n log n

[King Tarjan]

• 𝑂 𝑚 ⋅ min 𝑛
2

3, 𝑚
1

2 log
𝑛2

𝑚
log 𝑈 [Goldberg Rao ′98]

Previous Best: ෨𝑂(min(𝑚1.5, 𝑚𝑛2/3)) [Even-Tarjan 75, Goldberg-Rao 89]

Runtimes…

Unfortunately, this slide was made in 2011 (during my undergrad).

Undirected graph

𝑚𝑛1/3/𝜖11/3 [Christiano-Kelner-Madry-Spielman-Teng 2011]

𝑚𝑛1/3/𝜖2/3 [Lee-Rao-Srivastava 2013]

𝑚/𝜖2 [Sherman 2013, Kelner-Lee-Orecchia-Sidford 2014]

𝑚/𝜖 [Sherman 2017]

𝑚+ 𝑚𝑛/𝜖 [Sidford-Tian 2020]

Directed graph

𝑚10/7𝑈1/7 [Madry 2013, Madry 2016]

𝑚 𝑛 [Lee-Sidford 2013]

𝑚11/8𝑈1/4 [Liu-Sidford 2020]

𝑚4/3𝑈1/3 [Liu-Sidford 2020, Kathuria 2020]

𝑚+ 𝑛1.5 [Brand-Lee-Liu-Saranurak-Sidford-Song-Wang 2021]

𝑚3/2−1/328 [Gao-Liu-Peng 2021]

𝑚3/2−1/58 [Brand-Gao-Jambulapati-Lee-Liu-Peng-Sidford 2021]

28

Shortest Path and Maxflow?

Given an undirected graph with unit capacity and unit length.

What is the relation between shortest path and maxflow?

Let ℱ be the set of 𝑠-𝑡 flow with value 1.

Shortest path problem: min
𝑓∈ℱ

||𝑓||1.

Maxflow problem: min
𝑓∈ℱ

||𝑓||∞.

Solving maxflow via shortest path is like using ℓ1 problem to

approximate ℓ∞ problem.

29

Shortest Path and Maxflow?

Fact: min
𝑓∈ℱ

||𝑓||2 can be solved in 𝑂(𝑚 log𝑚) time.

[Spielman-Teng 2003]

Instead of augmenting using shortest path,

“augment” using ℓ2 flow.

This gives 𝑚 𝑛 time algorithm. (2014)

Every graph 𝐺 can be approximated by a sparse graph 𝐺′:

• 𝐺′ has 𝑂(𝑛) edges

• 𝑐𝑎𝑝𝐺 𝑆, 𝑆 = (1 ±
1

2
)𝑐𝑎𝑝𝐺′ 𝑆, 𝑆 for all set 𝑆.

Using this, one can “find” the augmenting path on the sparse

graph.

This gives 𝑚 + 𝑛3/2 time algorithm. (2020)
30

Approximate Graphs

with Sparse Graphs

Instead of looking at all vertices all the time,

we can random sample some vertices and shortcut the graph.

This gives 𝑚3/2−1/58 time algorithm. (2022)

31

Creating shortcut in the graph

Many graphs in practice has structures.

One common class is planar graphs.

For these graphs,

• we can solve maxflow in nearly linear time (2009)

• we can solve mincost flow in nearly linear time (2022)

32

How about simpler graphs?

Sally Dong

Guanghao Ye

(was a 421 student)

