
CSE 421

NP-Completeness

Yin Tat Lee

1

Latest News

2

Yesterday 5pm

Rough Idea

• The algorithm has 𝑚 iterations.

• Each iterations send an approximate shortest path from 𝑠 to 𝑡.

• They maintain 𝑛𝑜(1) spanning tree-ish and use the shortest
paths on these tree.

3

Don’t quote me on this.

This paper is 1-day new.

I haven’t really read it.

Rough Idea

• Use data structure to send the flow in 𝑛𝑜(1) time.

• The length is defined to be how saturated is an edge. It is
selected to ensures only the length of 𝑛𝑜(1) edges changes
sufficiently.

4

Don’t quote me on this.

This paper is 1-day new.

I haven’t really read it.

Rough Idea

• To find the data structure efficiently, the recursively reduce #
of edges and # of vertices.

5

Don’t quote me on this.

This paper is 1-day new.

I haven’t really read it.

I will “probably” have a

599 course on this next

year.

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no.

We can define a problem by a set 𝑋 ⊂ 0,1 𝑛.

The answer for the input 𝑠 is YES iff 𝑠 ∈ 𝑋.

Certifier: Algorithm C(s, t) is a certifier for problem A if

𝑠 ∈ 𝑋 if and only if (There is a 𝑡 such that 𝐶 𝑠, 𝑡 = 𝑌𝐸𝑆))

NP: Set of all decision problems for which there exists a poly-
time certifier.

3CNF: 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

6

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

Pf (Draft. Take CSE 431 for more.):

Since 𝐴 ∈ 𝑁𝑃, there is a polytime certifier 𝐶 such that

𝑠 ∈ 𝐴 iff 𝐶 𝑠, 𝑡 = 1 for some 𝑡
To solve the problem 𝐴, it suffices to find 𝑡.
Since 𝐶 is polytime, we can convert 𝐶 to a poly size circuit (of
AND OR NOT).

• Some input are the given 𝑠.
• Some input are 𝑡.
Our goal is to find 𝑡 to make
the output is TRUE.

7

Cook-Levin Theorem

To find an input such that output is true,

we convert the circuit to 3CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

• An OR gate with input a,b and output c can be represented by
𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐)

• A NOT gate with input a and output c can be represented by
𝑎 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐)

• An AND gate can be represented by OR and NOT

X and Y = not ((not X) or (not Y))

8

Cook-Levin Theorem

To find an input such that output is true,

we convert the circuit to 3CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

Suppose the circuit gate 𝐶1, 𝐶2, ⋯ , 𝐶𝑞.

For each circuit 𝐶𝑖, we create a new variable 𝑐𝑖.

The relation between the inputs of 𝐶𝑖 and its output 𝑐𝑖 is a 3CNF.

We write that as 𝐶𝑖

The whole formula is 3CNF is 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑞 ∧ 𝑐𝑞.

9

10

Steps to Proving

Problem B is NP-complete

Show B is NP-hard:

• State which NP-hard Problem A you want to solve using B.

• Show what the map f is.

• Argue that f is polynomial time

• Argue correctness: two directions
Yes for A implies Yes for B and vice versa.

Show B is in NP

• State what hint/certificate is and why it works

• Argue that it is polynomial-time to check.

11

Is NP-complete as bad as it gets?

• NO! NP-complete problems are frequently encountered, but

there are worse:

• Some problems provably require exponential time.

• Ex: Does M halt on input x in 2|x| steps?

Some require 2𝑛, 22
𝑛
, ⋯ steps

And some are just plain uncomputable.

• I was wrong last lecture. There are natural problems that is

not in P. Go is EXP-COMPLETE.

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

12

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 13

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

14

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Yet another example of NP completeness

15

Prove that Super Mario Bros is NP-complete.

What do we need to show?

• The problem is in NP.

• Some NP complete problem is easier than Super Mario.

Approach:

• 3SAT ≤𝑃 Super Mario

Yet another example of NP completeness

16

We ignore the following issues:

• Need to consider the “crossing” coz the level is 2-D.

• Assume Mario can go both left or right.

Given a 3SAT, we need to create a level.

17

Question 1: How to create this part?

18

Question 2: How to create this part?

19

So, what you need to prove?

• If the 3SAT is satisfiable, then indeed the level is solvable.

Usually, this part is easy. This is basically due to the design of
your reduction.

• If the level is solvable, then the 3SAT is satisfiable

This part usually requires more argument. Need to prove no
tricky way to solve the problem without solving the 3SAT.

20

More NP-completeness

• Subset-Sum problem

(Decision version of Knapsack)
• Given n integers w1,…,wn and integer W

• Is there a subset of the n input integers that adds

up to exactly W?

• O(nW) solution from dynamic programming but if

W and each wi can be n bits long then this is

exponential time

21

3-SAT PSubset-Sum

• Given a 3-CNF formula with m clauses
and n variables

• Will create 2m+2n numbers that are m+n
digits long

Two numbers for each variable xi

• ti and fi (corresponding to xi being true or xi being
false)

Two extra numbers for each clause
• uj and vj (filler variables to handle number of false

literals in clause Cj)

22

3-SAT PSubset-Sum

1 2 3 4 … n 1 2 3 4 … m

i j

1 0 0 0 … 0 0 0 1 0 … 1

1 0 0 0 … 0 1 0 0 1 … 0

0 1 0 0 … 0 0 1 0 0 … 1

0 0 0 0 … 0 1 0 0 0 … 0

0 1 0 0 … 0 0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1 x2 x5)

… ….

u1=v1

0 0 0 0 … 0 0 1 0 0 … 0u2=v2

… ….

1 1 1 1 … 1 3 3 3 3 … 3W

23

Graph Colorability

• Defn: Given a graph G=(V,E), and an integer k,
a k-coloring of G is

an assignment of up to k different colors to the vertices
of G so that the endpoints of each edge have
different colors.

• 3-Color: Given a graph G=(V,E), does G have a
3-coloring?

• Claim: 3-Color is NP-complete

• Proof: 3-Color is in NP:
Certificate is an assignment of red,green,blue to the

vertices of G

Easy to check that each edge is colored correctly

24

3-SAT P3-Color

• Reduction:

We want to map a 3-CNF formula F to a graph

G so that

• G is 3-colorable iff F is satisfiable

25

3-SAT P3-Color

O

TF

Base Triangle

26

3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Variable Part:

in 3-coloring, variable

colors correspond to

some truth assignment

(same color as T or F)

27

3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Clause Part:
Add one 6 vertex gadget per clause connecting

its ‘outer vertices’ to the literals in the clause

28

3-SAT P3-Color

Any truth assignment satisfying the formula

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

x1

x2

xn

...
x2

xn
T

F/T

F/T

29

3-SAT P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

30

3-SAT P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

31

3-SAT P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

T

Summary
• If a problem is NP-hard it does not mean that all instances are

hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

32

