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Rough Idea

• The algorithm has 𝑚 iterations. 

• Each iterations send an approximate shortest path from 𝑠 to 𝑡.

• They maintain 𝑛𝑜(1) spanning tree-ish and use the shortest 
paths on these tree.
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Don’t quote me on this. 

This paper is 1-day new.

I haven’t really read it.



Rough Idea

• Use data structure to send the flow in 𝑛𝑜(1) time.

• The length is defined to be how saturated is an edge. It is 
selected to ensures only the length of 𝑛𝑜(1) edges changes 
sufficiently.
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Don’t quote me on this. 

This paper is 1-day new.

I haven’t really read it.



Rough Idea

• To find the data structure efficiently, the recursively reduce # 
of edges and # of vertices.
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Don’t quote me on this. 

This paper is 1-day new.

I haven’t really read it.

I will “probably” have a 

599 course on this next 

year.



Decision Problems

A decision problem is a computational problem where the 
answer is just yes/no.

We can define a problem by a set 𝑋 ⊂ 0,1 𝑛.

The answer for the input 𝑠 is YES iff 𝑠 ∈ 𝑋.

Certifier:  Algorithm C(s, t) is a certifier for problem A if 

𝑠 ∈ 𝑋 if and only if (There is a 𝑡 such that 𝐶 𝑠, 𝑡 = 𝑌𝐸𝑆))

NP:  Set of all decision problems for which there exists a poly-
time certifier.

3CNF: 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

6



Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all 
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

Pf (Draft. Take CSE 431 for more.):

Since 𝐴 ∈ 𝑁𝑃, there is a polytime certifier 𝐶 such that 

𝑠 ∈ 𝐴 iff 𝐶 𝑠, 𝑡 = 1 for some 𝑡
To solve the problem 𝐴, it suffices to find 𝑡.
Since 𝐶 is polytime, we can convert 𝐶 to a poly size circuit (of 
AND OR NOT).

• Some input are the given 𝑠.
• Some input are 𝑡.
Our goal is to find 𝑡 to make 
the output is TRUE.

7



Cook-Levin Theorem

To find an input such that output is true, 

we convert the circuit to 3CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

• An OR gate with input a,b and output c can be represented by
𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐)

• A NOT gate with input a and output c can be represented by
𝑎 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐)

• An AND gate can be represented by OR and NOT

X and Y = not ((not X) or (not Y))
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Cook-Levin Theorem

To find an input such that output is true, 

we convert the circuit to 3CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

Suppose the circuit gate 𝐶1, 𝐶2, ⋯ , 𝐶𝑞.

For each circuit 𝐶𝑖, we create a new variable 𝑐𝑖.

The relation between the inputs of 𝐶𝑖 and its output 𝑐𝑖 is a 3CNF.

We write that as 𝐶𝑖

The whole formula is 3CNF is 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑞 ∧ 𝑐𝑞.
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Steps to Proving

Problem B is NP-complete

Show B is NP-hard:

• State which NP-hard Problem A you want to solve using B.

• Show what the map f is.

• Argue that f is polynomial time

• Argue correctness:  two directions
Yes for A implies Yes for B and vice versa. 

Show B is in NP

• State what hint/certificate is and why it works

• Argue that it is polynomial-time to check.
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Is NP-complete as bad as it gets?

• NO!  NP-complete problems are frequently encountered, but 

there are worse:

• Some problems provably require exponential time.

• Ex: Does M halt on input x in 2|x| steps?

Some require 2𝑛, 22
𝑛
, ⋯ steps

And some are just plain uncomputable.

• I was wrong last lecture. There are natural problems that is 

not in P. Go is EXP-COMPLETE.



3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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Polynomial-Time Reduction



Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause 
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 13
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Correctness of 3-SAT ≤𝑝 Indep Set 

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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Yet another example of NP completeness
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Prove that Super Mario Bros is NP-complete.

What do we need to show?

• The problem is in NP.

• Some NP complete problem is easier than Super Mario.

Approach:

• 3SAT ≤𝑃 Super Mario



Yet another example of NP completeness
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We ignore the following issues:

• Need to consider the “crossing” coz the level is 2-D.

• Assume Mario can go both left or right.

Given a 3SAT, we need to create a level.
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Question 1: How to create this part?
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Question 2: How to create this part?



19

So, what you need to prove?

• If the 3SAT is satisfiable, then indeed the level is solvable.

Usually, this part is easy. This is basically due to the design of 
your reduction.

• If the level is solvable, then the 3SAT is satisfiable

This part usually requires more argument. Need to prove no 
tricky way to solve the problem without solving the 3SAT.
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More NP-completeness

• Subset-Sum problem

(Decision version of Knapsack)
• Given n integers w1,…,wn and integer W

• Is there a subset of the n input integers that adds 

up to exactly W?

• O(nW) solution from dynamic programming but if 

W and each wi can be n bits long then this is 

exponential time
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3-SAT PSubset-Sum

• Given a 3-CNF formula with m clauses 
and n variables

• Will create 2m+2n numbers that are m+n
digits long

Two numbers for each variable xi

• ti and fi (corresponding to xi being true or xi being 
false)

Two extra numbers for each clause
• uj and vj (filler variables to handle number of false 

literals in clause Cj)
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3-SAT PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1 x2 x5)

…          ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

…          ….

1 1 1 1 …  1  3 3 3 3 … 3W
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Graph Colorability

• Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is

an assignment of up to k different colors to the vertices 
of G so that the endpoints of each edge have 
different colors.

• 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

• Claim: 3-Color is NP-complete

• Proof: 3-Color is in NP:
Certificate is an assignment of red,green,blue to the 

vertices of G

Easy to check that each edge is colored correctly
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3-SAT P3-Color

• Reduction:

We want to map a 3-CNF formula F to a graph 

G so that

• G is 3-colorable iff F is satisfiable
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3-SAT P3-Color

O

TF

Base Triangle
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3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause
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3-SAT P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

x1

x2

xn

...
x2

xn
T

F/T

F/T
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3-SAT P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn
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3-SAT P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F
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3-SAT P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

T



Summary
• If a problem is NP-hard it does not mean that all instances are 

hared, e.g., Vertex-cover has a polynomial-time algorithm in 
trees

• We learned the crucial idea of polynomial-time reduction. This 
can be even used in algorithm design, e.g., we know how to 
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP. 

• Polynomial-time reductions are transitive relations
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