
CSE 421

NP-Completeness

Yin Tat Lee

1

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

2

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 3

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

4

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

5

More NP-completeness

• Subset-Sum problem

(Decision version of Knapsack)
• Given n integers w1,…,wn and integer W

• Is there a subset of the n input integers that adds

up to exactly W?

• O(nW) solution from dynamic programming but if

W and each wi can be n bits long then this is

exponential time

6

3-SAT PSubset-Sum

• Given a 3-CNF formula with m clauses
and n variables

• Will create 2m+2n numbers that are m+n
digits long

Two numbers for each variable xi

• ti and fi (corresponding to xi being true or xi being
false)

Two extra numbers for each clause
• uj and vj (filler variables to handle number of false

literals in clause Cj)

7

3-SAT PSubset-Sum

1 2 3 4 … n 1 2 3 4 … m

i j

1 0 0 0 … 0 0 0 1 0 … 1

1 0 0 0 … 0 1 0 0 1 … 0

0 1 0 0 … 0 0 1 0 0 … 1

0 0 0 0 … 0 1 0 0 0 … 0

0 1 0 0 … 0 0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1 x2 x5)

… ….

u1=v1

0 0 0 0 … 0 0 1 0 0 … 0u2=v2

… ….

1 1 1 1 … 1 3 3 3 3 … 3W

8

Graph Colorability

• Defn: Given a graph G=(V,E), and an integer k,
a k-coloring of G is

an assignment of up to k different colors to the vertices
of G so that the endpoints of each edge have
different colors.

• 3-Color: Given a graph G=(V,E), does G have a
3-coloring?

• Claim: 3-Color is NP-complete

• Proof: 3-Color is in NP:
Certificate is an assignment of red,green,blue to the

vertices of G

Easy to check that each edge is colored correctly

9

3-SAT P3-Color

• Reduction:

We want to map a 3-CNF formula F to a graph

G so that

• G is 3-colorable iff F is satisfiable

10

3-SAT P3-Color

O

TF

Base Triangle

11

3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Variable Part:

in 3-coloring, variable

colors correspond to

some truth assignment

(same color as T or F)

12

3-SAT P3-Color

O

TF

x1

x1

x2

xn

...
x2

xn

Clause Part:
Add one 6 vertex gadget per clause connecting

its ‘outer vertices’ to the literals in the clause

13

3-SAT P3-Color

Any truth assignment satisfying the formula

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

x1

x2

xn

...
x2

xn
T

F/T

F/T

14

3-SAT P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

15

3-SAT P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

16

3-SAT P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F

T

Summary
• If a problem is NP-hard it does not mean that all instances are

hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce bipartite matching to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

17

CSE 421

Vertex Cover / Set Cover

Yin Tat Lee

18

Approximation Algorithms

Many of the important problems are NP-complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set,
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.

What to do instead?

• Find optimum solution of special cases (e.g., random
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem

We call an algorithm has approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For each NP-hard problem find an poly-time

approximation algorithm with the best possible

approximation ratio.

Approximation Algorithm

Given a graph 𝐺 = (𝑉, 𝐸), Find smallest set of vertices
touching every edge

Vertex Cover

Greedy algorithms are typically used in practice to find a
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most
new edges

Q:Does this give an optimum solution?

A: No,

Greedy Algorithm?

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy Vertex cover = 20

OPT Vertex cover = 8

Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4

Greedy Vertex cover = 20

OPT Vertex cover = 8

Greedy (1): Pick vertex that covers the most

|𝐵𝑖| = 𝑛/𝑖𝐵𝑛 𝐵1𝐵𝑛−1

𝑛 vertices. Each vertex has one edge into each 𝐵𝑖

Greedy pick bottom vertices = 𝑛 +
𝑛

2
+

𝑛

3
+⋯+ 1 ≈ 𝑛 ln𝑛

OPT pick top vertices = n

Greedy 2: Iteratively, pick both endpoints of an uncovered
edge.

A Different Greedy Rule

Vertex cover = 6

Greedy 2: Pick Both endpoints of an

uncovered edge

𝐵2𝐵1 𝐵3
𝐵4

Greedy vertex cover = 16

OPT vertex cover = 8

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒1, … , 𝑒𝑘 .

Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain
skills.

Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

A Tight Example for Greedy

OPT = 2Greedy = 5

Thm: If the best solution has k sets, greedy finds at most k
ln(n) sets.

Pf: Suppose OPT=k

There is set that covers 1/k fraction of remaining elements,
since there are k sets that cover all remaining elements.

So in each step, algorithm will cover 1/k fraction of
remaining elements.

#elements uncovered after t steps

≤ 𝑛 1 −
1

𝑘

𝑡

≤ 𝑛𝑒−
𝑡
𝑘

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation

Approximation Algorithm Summary

• The best known approximation algorithm for set cover is
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio
for set cover.

• The best known approximation algorithm for vertex cover
is the greedy.

– It has been open for 40 years to obtain a polynomial time
algorithm with approximation ratio better than 2

• There is a long list of questions we do not know the best
approximation algorithm.

• https://en.wikipedia.org/wiki/Unique_games_conjecture

https://en.wikipedia.org/wiki/Unique_games_conjecture

