

NP-Completeness

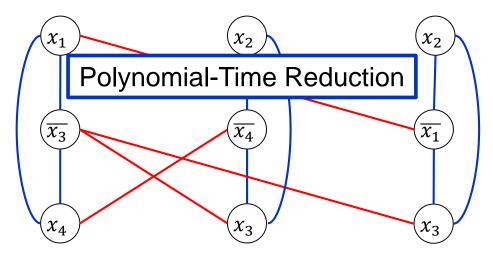
Yin Tat Lee

$3\text{-SAT} \leq_p \text{Independent Set}$

Map a 3-CNF to (G,k). Say m is number of clauses

- Create a vertex for each literal
- Joint two literals if
 - They belong to the same clause (blue edges)
 - The literals are negations, e.g., x_i , $\overline{x_i}$ (red edges)
- Set k be the # of clauses.

$$(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (\cdot x_2 \lor \overline{x_1} \lor x_3)$$



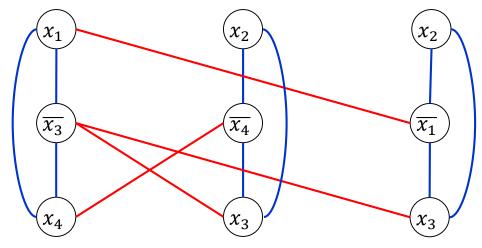
Correctness of 3-SAT \leq_p Indep Set

<u>F satisfiable => An independent of size k</u>

Given a satisfying assignment, Choose one node from each clause where the literal is satisfied

 $(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)$

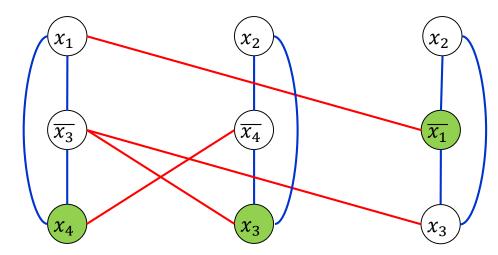
Satisfying assignment: $x_1 = T$, $x_2 = F$, $x_3 = T$, $x_4 = F$



- S has exactly one node per clause => No blue edges between S
- S follows a truth-assignment => No red edges between S
- S has one node per clause => |S|=k

Correctness of 3-SAT \leq_p Indep Set

An independent set of size $k \Rightarrow A$ satisfying assignment Given an independent set S of size k. S has exactly one vertex per clause (because of blue edges) S does not have $x_i, \overline{x_i}$ (because of red edges) So, S gives a satisfying assignment



Satisfying assignment: $x_1 = F$, $x_2 = ?$, $x_3 = T$, $x_4 = T$ $(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)$

More NP-completeness

- Subset-Sum problem (Decision version of Knapsack)
 - Given n integers w_1, \ldots, w_n and integer W
 - Is there a subset of the n input integers that adds up to exactly W?
- O(nW) solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time

$3-SAT \leq_P Subset-Sum$

- Given a 3-CNF formula with m clauses and n variables
- Will create 2m+2n numbers that are m+n digits long

Two numbers for each variable \mathbf{x}_{i}

t_i and f_i (corresponding to x_i being true or x_i being false)

Two extra numbers for each clause

 u_j and v_j (filler variables to handle number of false literals in clause C_j)

$3-SAT \leq_P Subset-Sum$

1234... n 1234... m $C_3 = (X_1 \lor \neg X_2 \lor X_5)$ $t_1 | 1 0 0 0 \dots 0 0 0 1 0 \dots 1$ 1000...01001...0 f_1 t₂ 0 1 0 0 ... 0 0 1 0 0 ... 1 f₂ 0 1 0 0 ... 0 0 0 1 1 ... 0 $u_1 = v_1 | 0 0 0 0 \dots 0 1 0 0 0 \dots 0$ $|\mathbf{u}_2 = \mathbf{v}_2| 0 0 0 0 \dots 0 0 1 0 0 \dots 0$ W 1111...13333...3

Graph Colorability

 Defn: Given a graph G=(V,E), and an integer k, a k-coloring of G is

an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.

- 3-Color: Given a graph G=(V,E), does G have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:

Certificate is an assignment of red,green,blue to the vertices of G

Easy to check that each edge is colored correctly

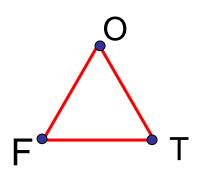
$3-SAT \leq_P 3-Color$

• Reduction:

We want to map a 3-CNF formula F to a graph G so that

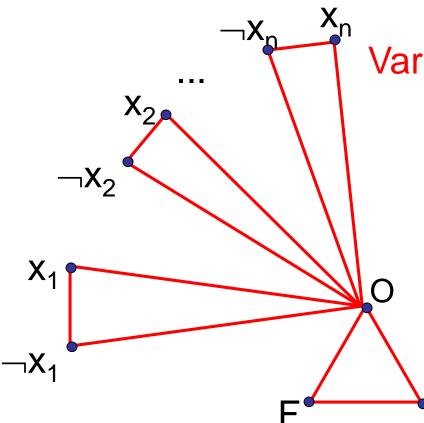
• **G** is 3-colorable iff **F** is satisfiable

$3-SAT \leq_P 3-Color$



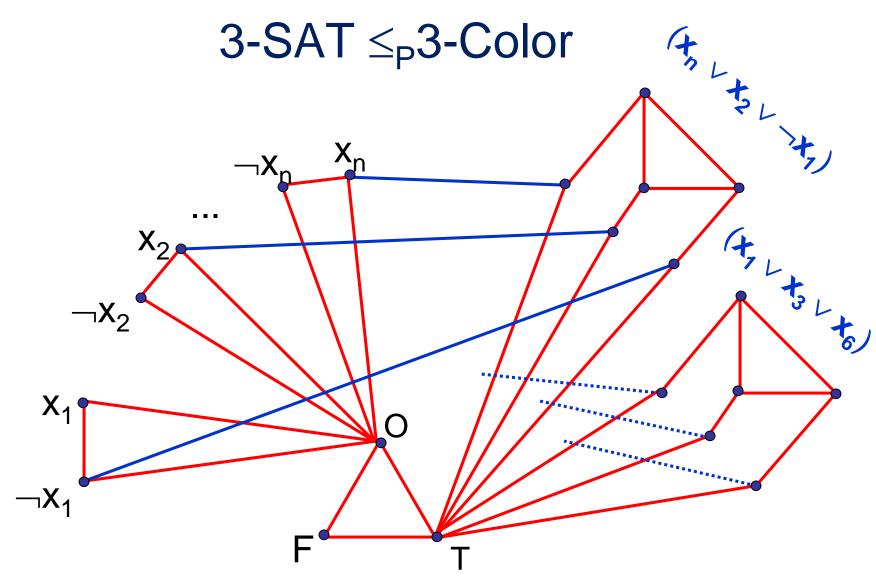
Base Triangle

$3-SAT \leq_P 3-Color$



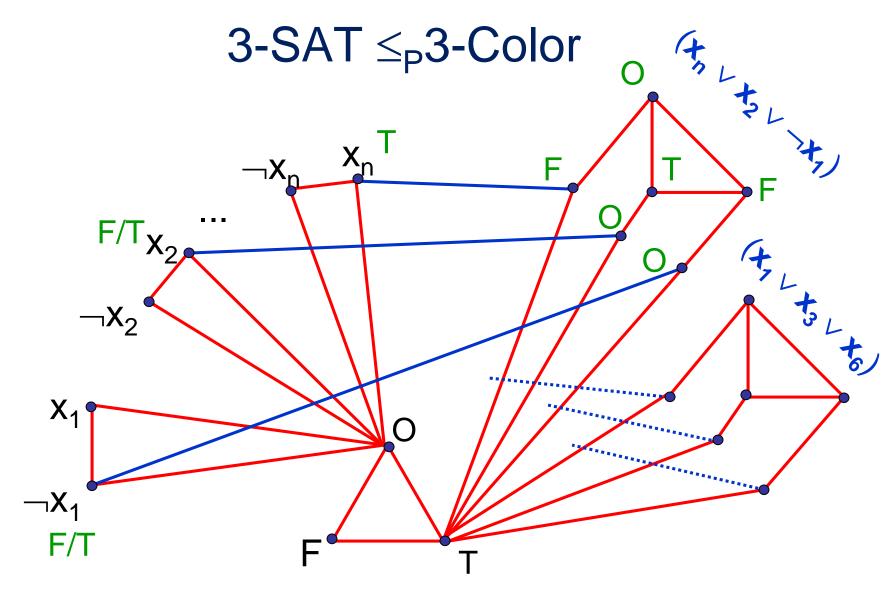
Variable Part:

in 3-coloring, variable colors correspond to some truth assignment (same color as T or F)

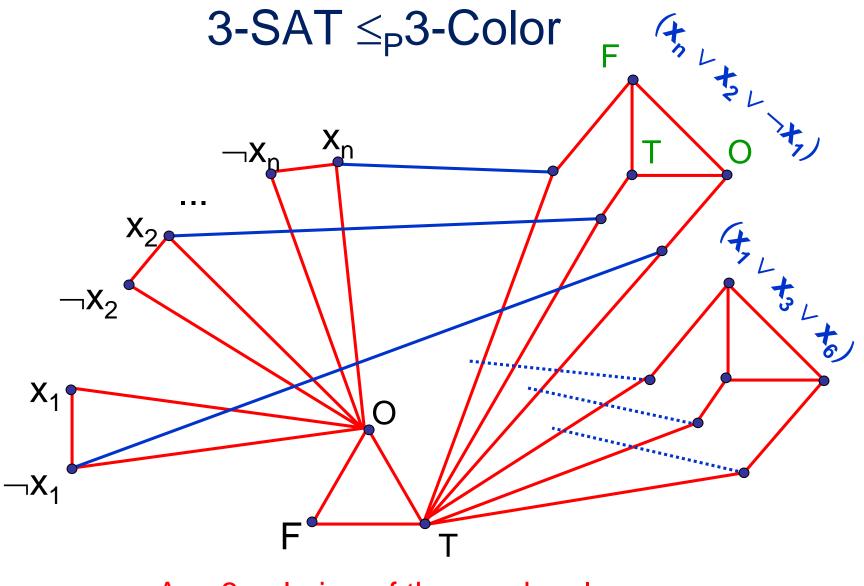


Clause Part:

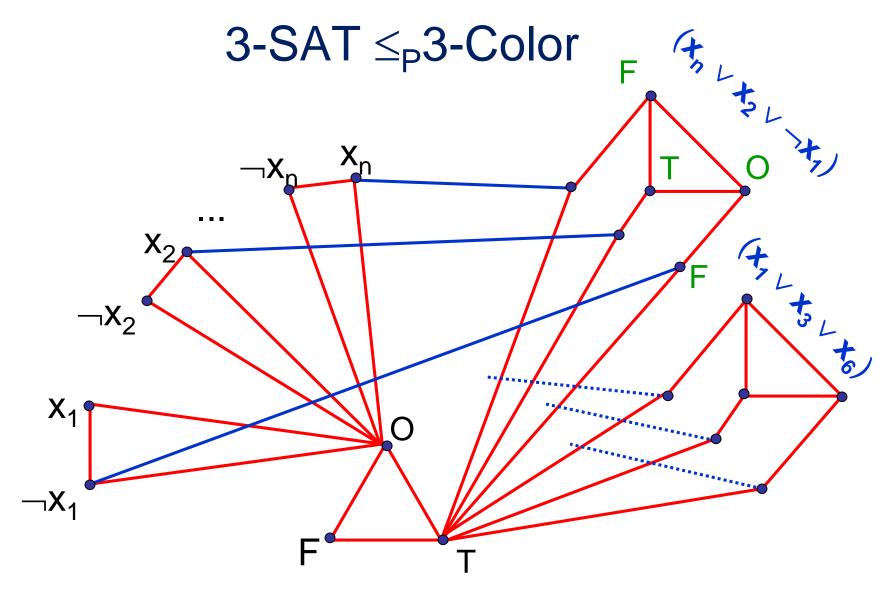
Add one 6 vertex gadget per clause connecting 12 its 'outer vertices' to the literals in the clause



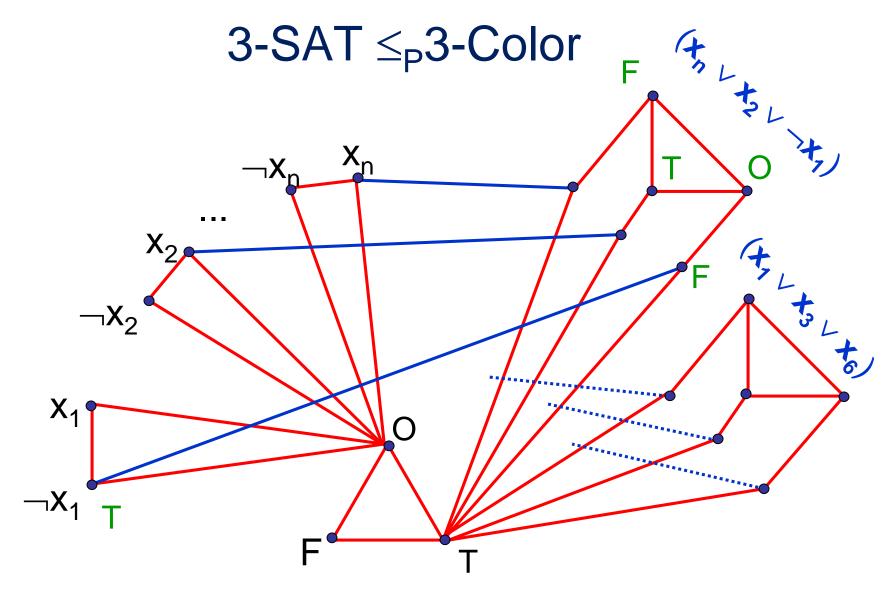
Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph



Any 3-coloring of the graph colors each gadget triangle using each color



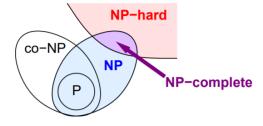
Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget



Any 3-coloring of the graph has T at the other end of the blue edge connected to the F

Summary

- If a problem is NP-hard it does not mean that all instances are hared, e.g., Vertex-cover has a polynomial-time algorithm in trees
- We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce bipartite matching to max-flow
- NP-Complete problems are the hardest problem in NP
- NP-hard problems may not necessarily belong to NP.
- Polynomial-time reductions are transitive relations



Vertex Cover / Set Cover

Yin Tat Lee

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems are NP-complete. SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time. What to do instead?

- Find optimum solution of special cases (e.g., random inputs)
- Find near optimum solution in the worst case

Approximation Algorithm

We call an algorithm has approximation ratio $\alpha(n)$ if

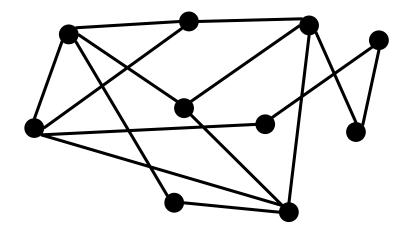
 $\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)$

for any input of length *n*. (worst case)

Goal: For each NP-hard problem find an poly-time approximation algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph G = (V, E), Find smallest set of vertices touching every edge

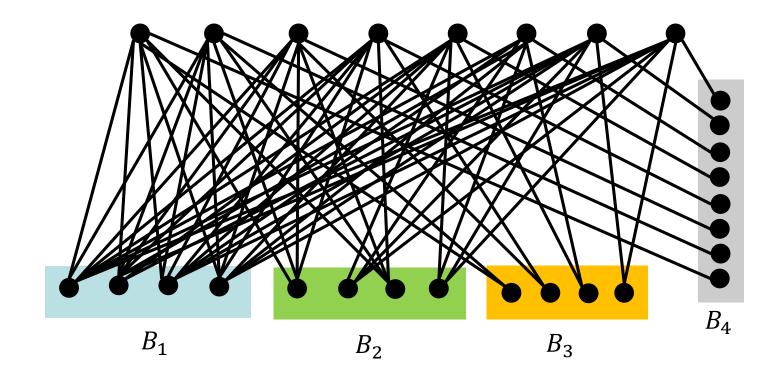


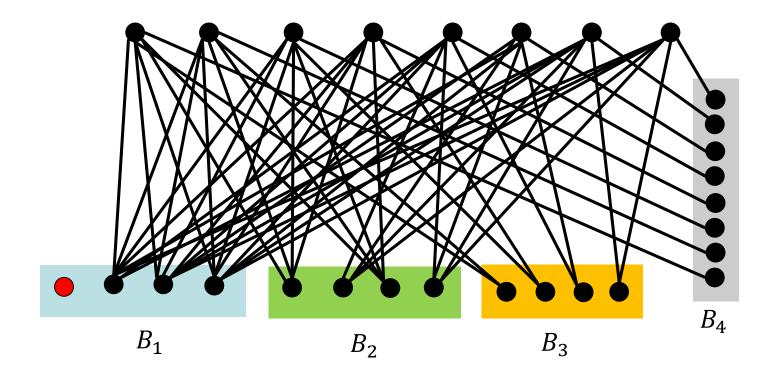
Greedy Algorithm?

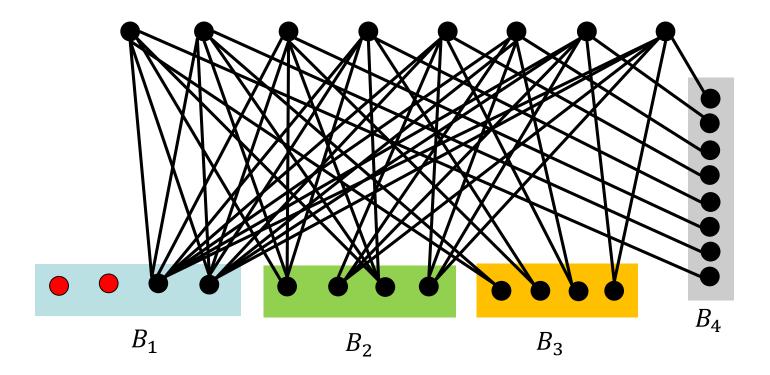
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

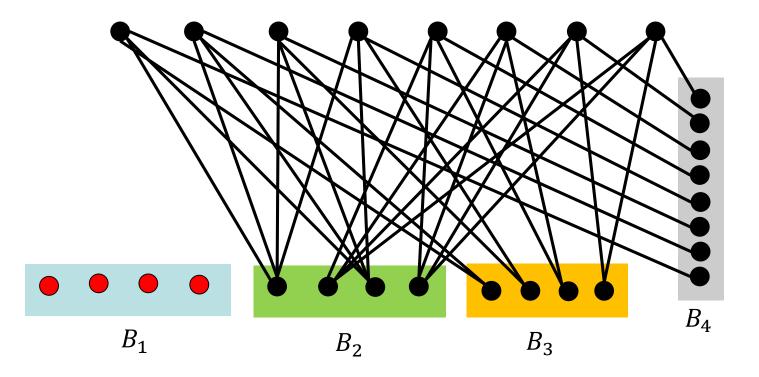
Strategy (1): Iteratively, include a vertex that covers most new edges

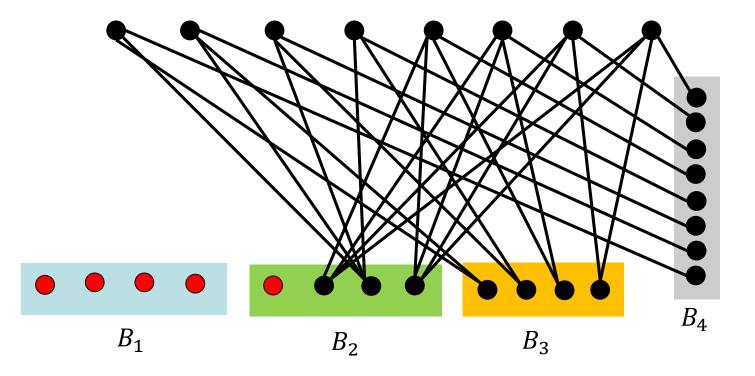
Q:Does this give an optimum solution? A: No,

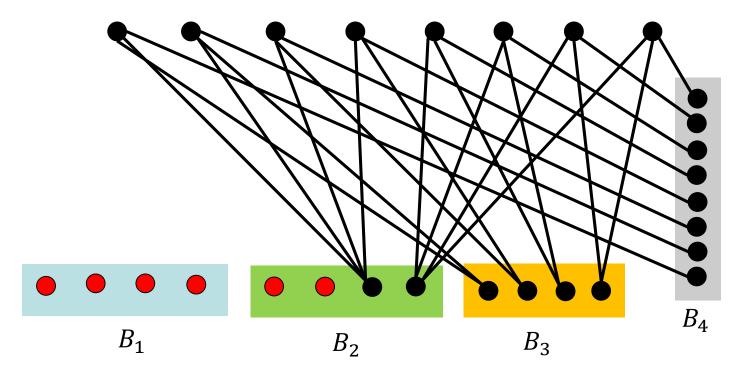


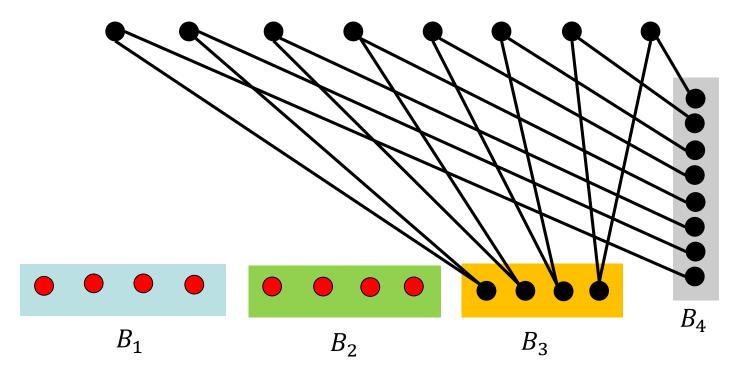


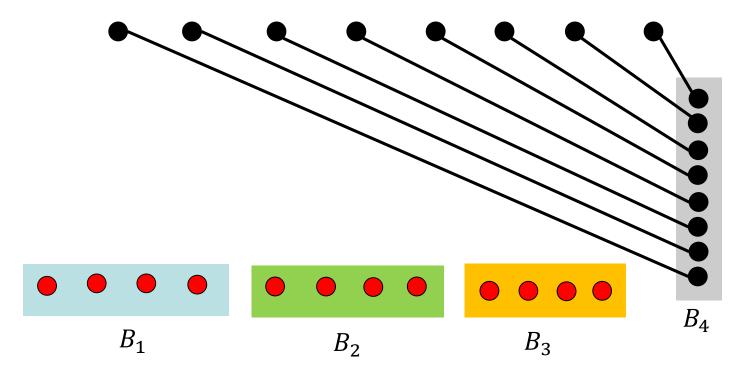


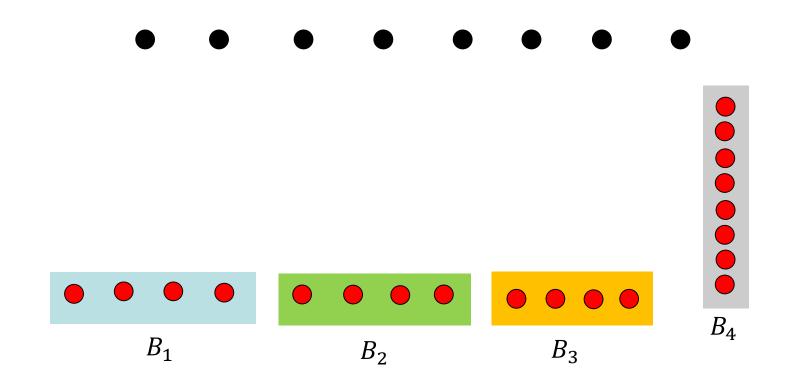


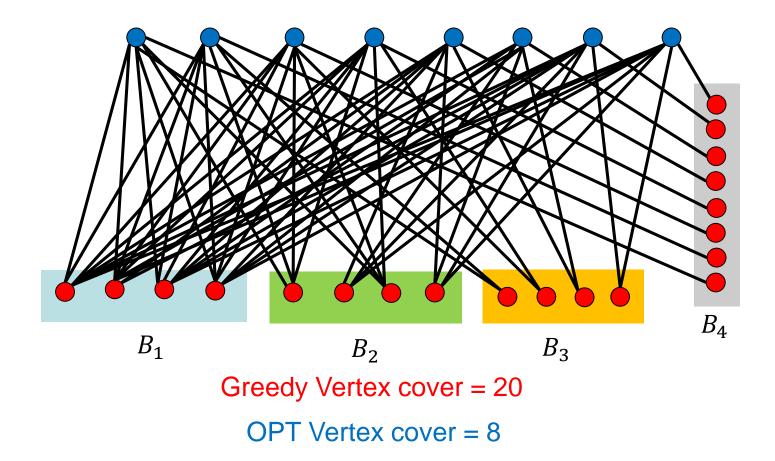


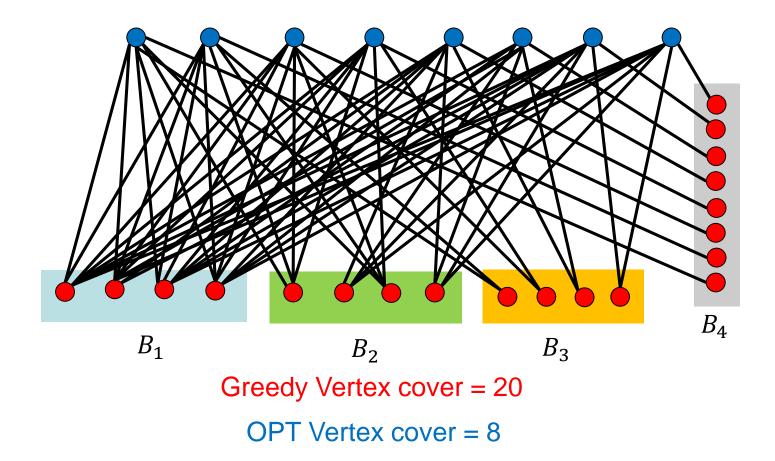




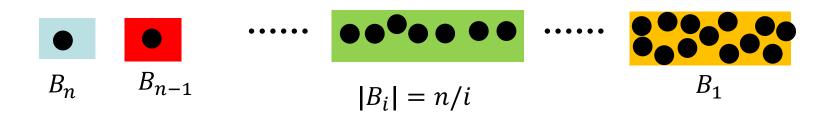








n vertices. Each vertex has one edge into each B_i

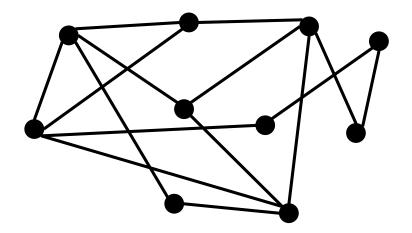


Greedy pick bottom vertices = $n + \frac{n}{2} + \frac{n}{3} + \dots + 1 \approx n \ln n$ OPT pick top vertices = n

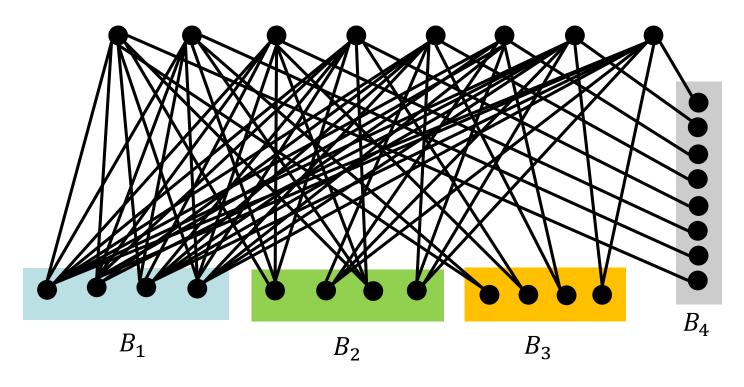
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6



Greedy 2: Pick Both endpoints of an uncovered edge



Greedy vertex cover = 16

OPT vertex cover = 8

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges $e_1, ..., e_k$. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \ge k$.

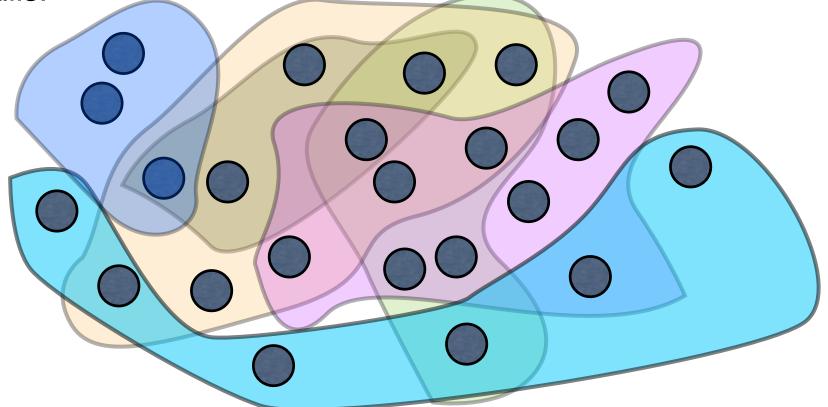
But the size of greedy cover is 2k. So, Greedy is a 2approximation.

Set Cover

Given a number of sets on a ground set of elements,

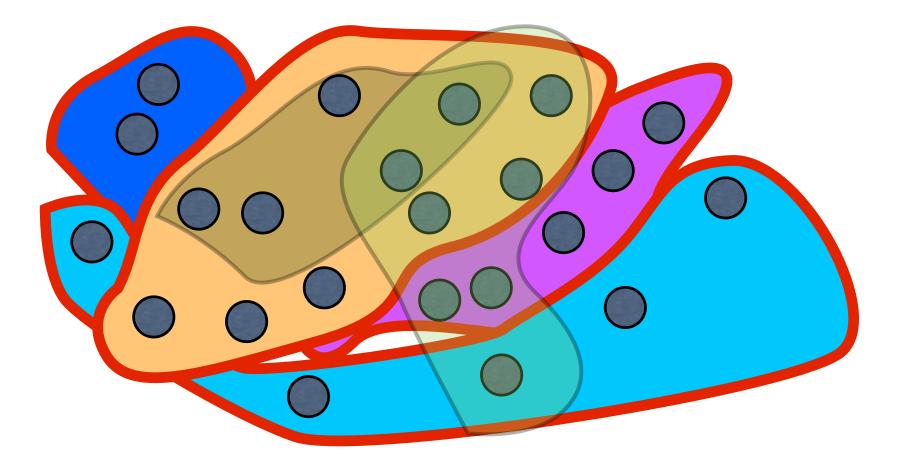
Goal: choose minimum number of sets that cover all.

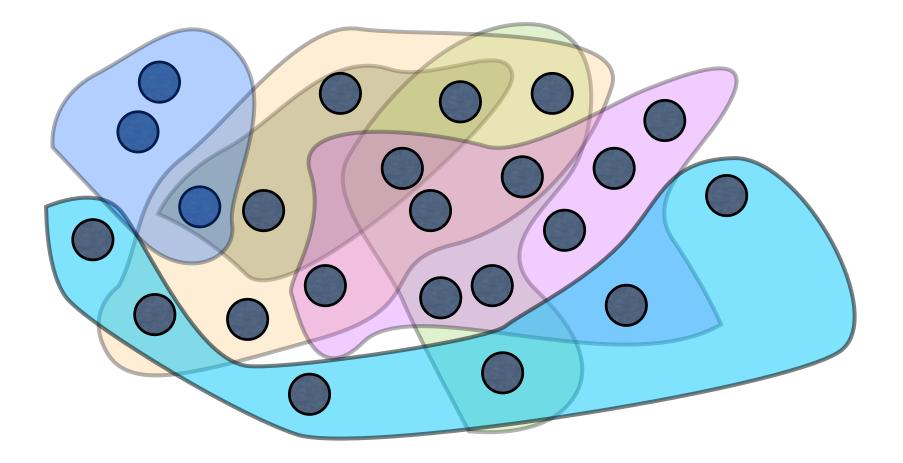
e.g., a company wants to hire employees with certain skills.

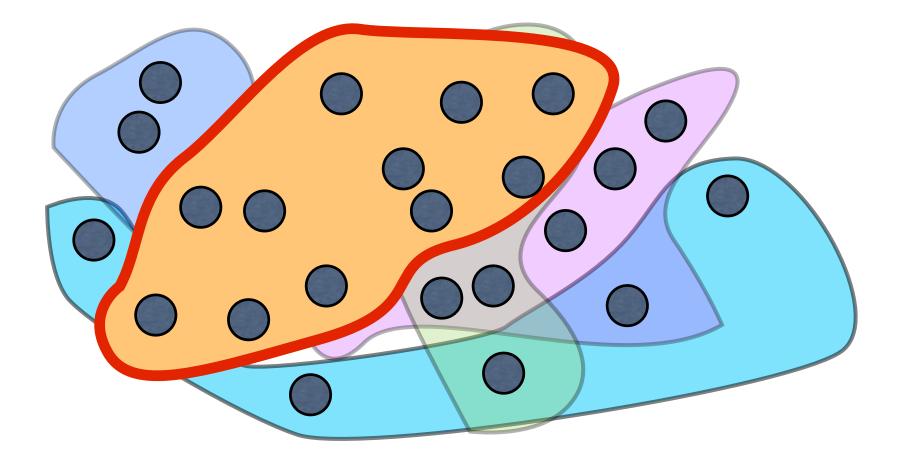


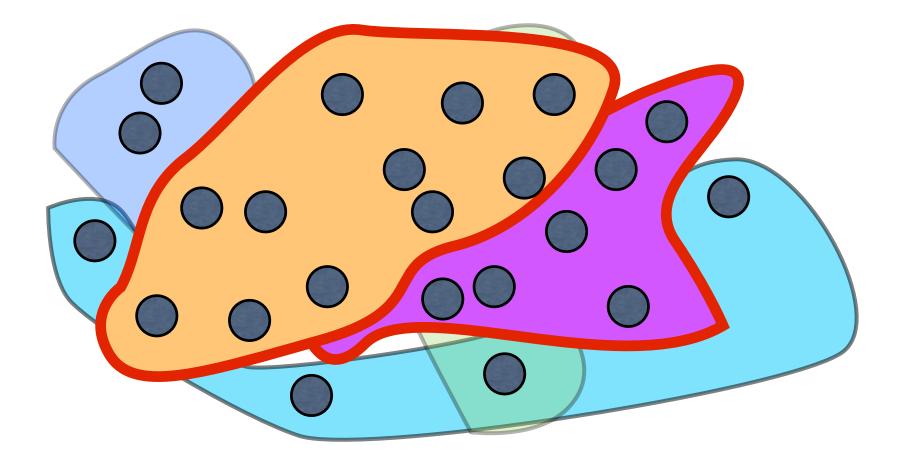
Set Cover

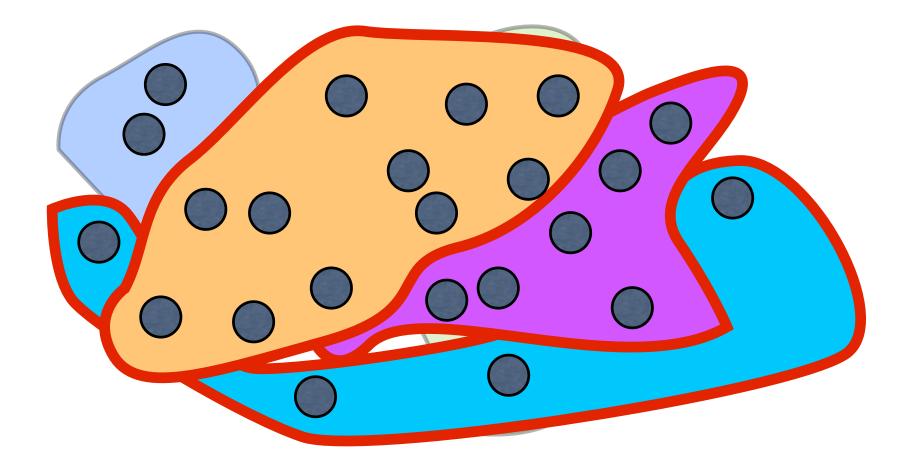
Given a number of sets on a ground set of elements, Goal: choose minimum number of sets that cover all. Set cover = 4





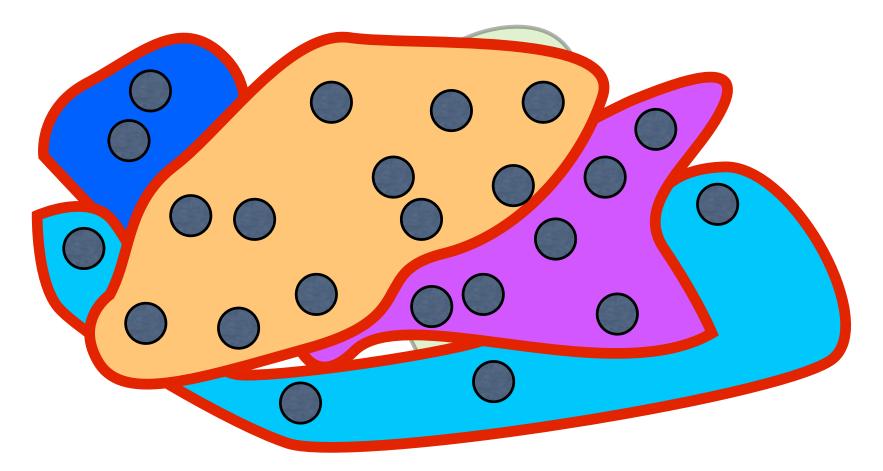


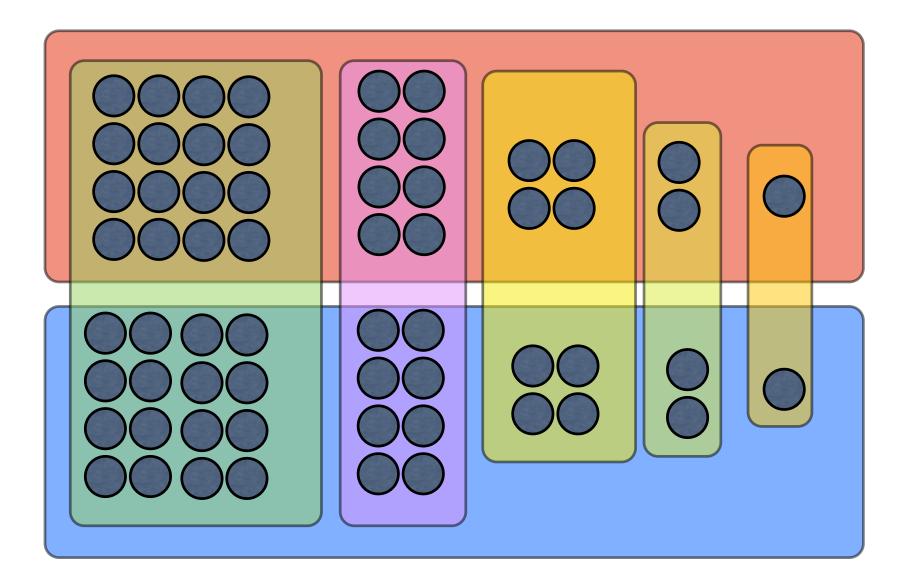


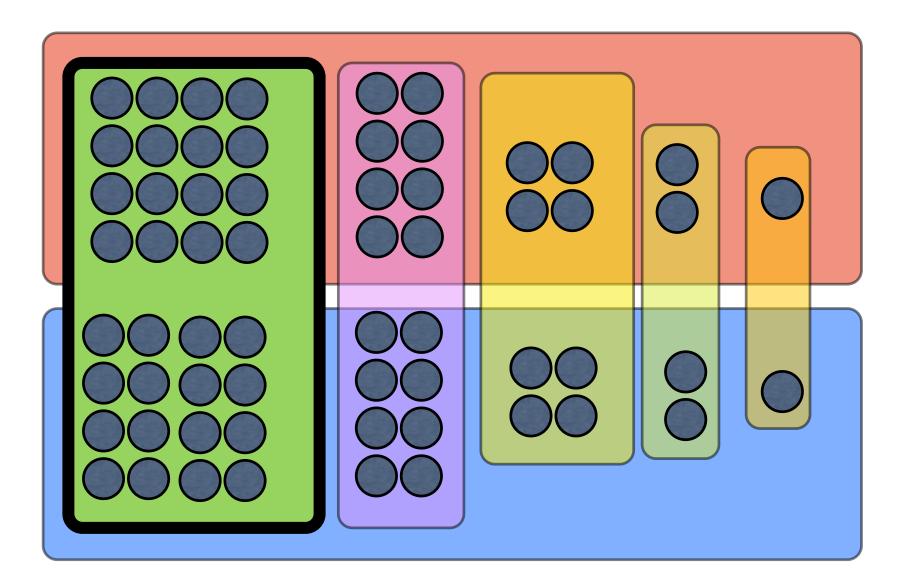


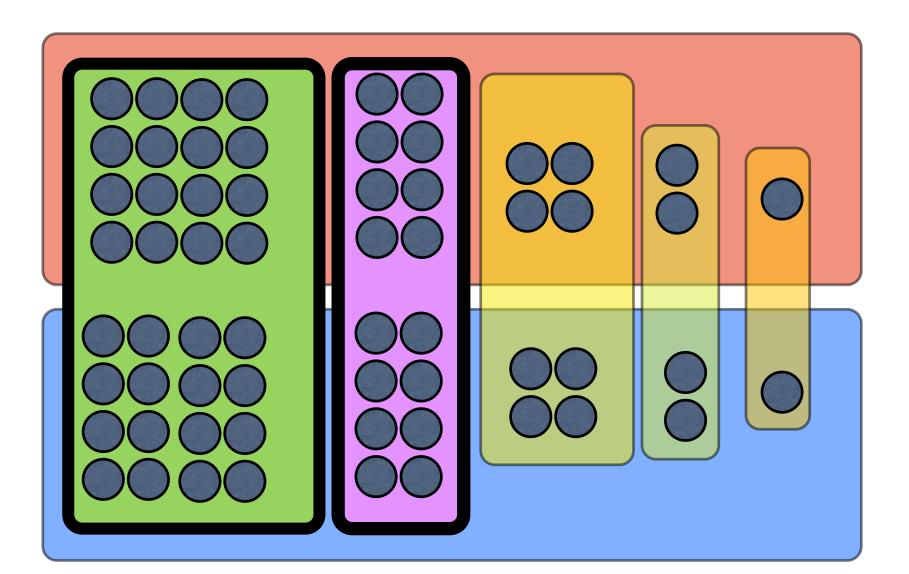
Strategy: Pick the set that maximizes # new elements covered

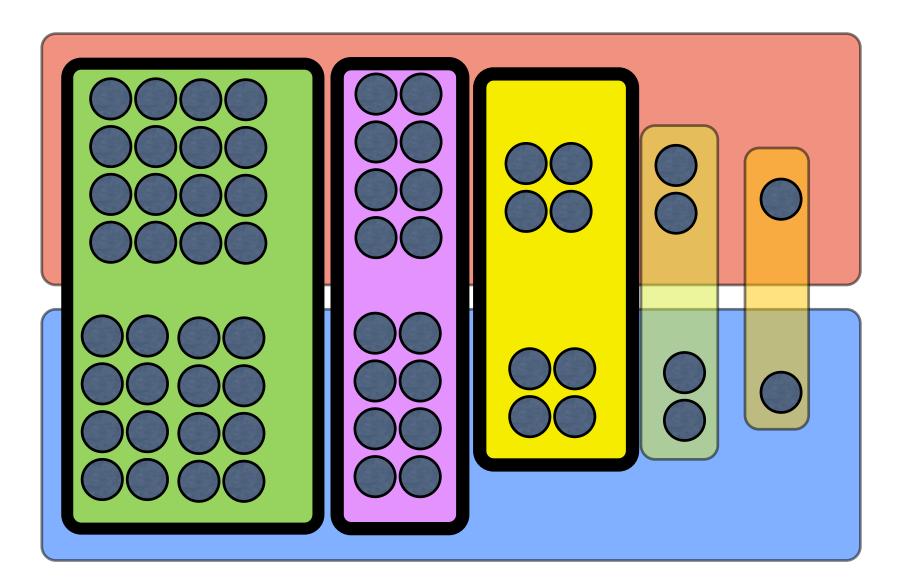
Thm: Greedy has In n approximation ratio

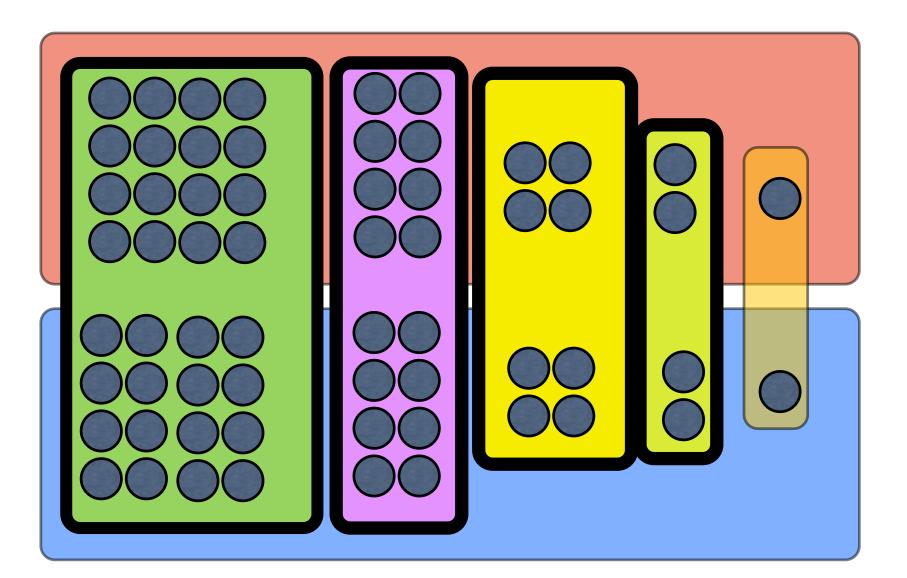






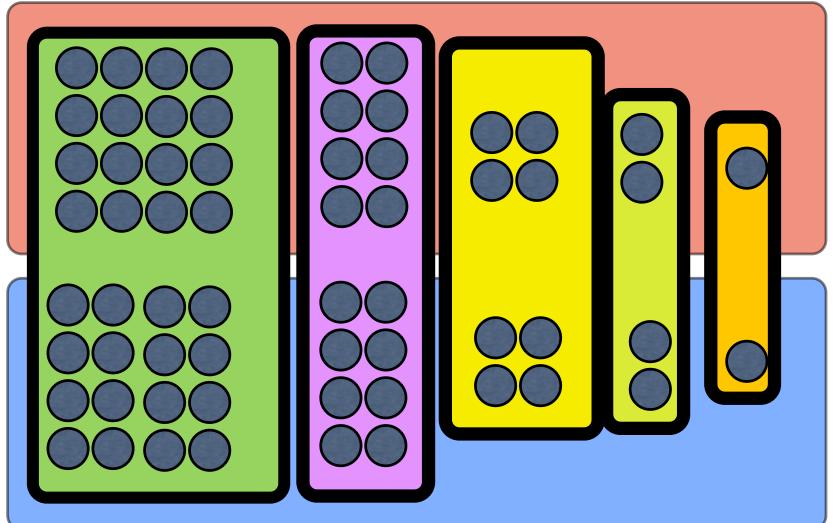






Greedy = 5

OPT = 2



Greedy Gives O(log(n)) approximation

Thm: If the best solution has k sets, greedy finds at most k ln(n) sets.

Pf: Suppose OPT=k

There is set that covers 1/k fraction of remaining elements, since there are k sets that cover all remaining elements.

So in each step, algorithm will cover 1/k fraction of remaining elements.

#elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k} \right)^t \leq n e^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.

Approximation Algorithm Summary

- The best known approximation algorithm for set cover is the greedy.
 - It is NP-Complete to obtain better than ln(n) approximation ratio for set cover.
- The best known approximation algorithm for vertex cover is the greedy.
 - It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2
- There is a long list of questions we do not know the best approximation algorithm.
- https://en.wikipedia.org/wiki/Unique_games_conjecture