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3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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Polynomial-Time Reduction



Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause 
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 3
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Correctness of 3-SAT ≤𝑝 Indep Set 

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3
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More NP-completeness

• Subset-Sum problem

(Decision version of Knapsack)
• Given n integers w1,…,wn and integer W

• Is there a subset of the n input integers that adds 

up to exactly W?

• O(nW) solution from dynamic programming but if 

W and each wi can be n bits long then this is 

exponential time
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3-SAT PSubset-Sum

• Given a 3-CNF formula with m clauses 
and n variables

• Will create 2m+2n numbers that are m+n
digits long

Two numbers for each variable xi

• ti and fi (corresponding to xi being true or xi being 
false)

Two extra numbers for each clause
• uj and vj (filler variables to handle number of false 

literals in clause Cj)
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3-SAT PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1 x2 x5)

…          ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

…          ….

1 1 1 1 …  1  3 3 3 3 … 3W
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Graph Colorability

• Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is

an assignment of up to k different colors to the vertices 
of G so that the endpoints of each edge have 
different colors.

• 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

• Claim: 3-Color is NP-complete

• Proof: 3-Color is in NP:
Certificate is an assignment of red,green,blue to the 

vertices of G

Easy to check that each edge is colored correctly
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3-SAT P3-Color

• Reduction:

We want to map a 3-CNF formula F to a graph 

G so that

• G is 3-colorable iff F is satisfiable
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3-SAT P3-Color

O
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3-SAT P3-Color
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Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT P3-Color
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Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause
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3-SAT P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O
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F
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F/T
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3-SAT P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn
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3-SAT P3-Color

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

O

TF

x1

x1

x2

xn

...
x2

xn

F
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3-SAT P3-Color

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O
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Summary
• If a problem is NP-hard it does not mean that all instances are 

hared, e.g., Vertex-cover has a polynomial-time algorithm in 
trees

• We learned the crucial idea of polynomial-time reduction. This 
can be even used in algorithm design, e.g., we know how to 
solve max-flow so we reduce bipartite matching to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP. 

• Polynomial-time reductions are transitive relations
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Approximation Algorithms



Many of the important problems are NP-complete. 

SAT, Set Cover, Graph Coloring, TSP, Max IND Set, 
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.

What to do instead?

• Find optimum solution of special cases (e.g., random 
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem



We call an algorithm has approximation ratio 𝛼(𝑛) if

Cost of computed solution

Cost of the optimum
≤ 𝛼(𝑛)

for any input of length 𝑛. (worst case)

Goal: For each NP-hard problem find an poly-time 

approximation algorithm with the best possible 

approximation ratio.

Approximation Algorithm



Given a graph 𝐺 = (𝑉, 𝐸), Find smallest set of vertices 
touching every edge 

Vertex Cover



Greedy algorithms are typically used in practice to find a 
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most 
new edges

Q:Does this give an optimum solution?

A: No, 

Greedy Algorithm?



Greedy (1): Pick vertex that covers the most

𝐵2𝐵1 𝐵3
𝐵4
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Greedy (1): Pick vertex that covers the most
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Greedy Vertex cover = 20

OPT Vertex cover = 8
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Greedy (1): Pick vertex that covers the most

|𝐵𝑖| = 𝑛/𝑖𝐵𝑛 𝐵1𝐵𝑛−1

𝑛 vertices. Each vertex has one edge into each 𝐵𝑖

Greedy pick bottom vertices = 𝑛 +
𝑛

2
+

𝑛

3
+⋯+ 1 ≈ 𝑛 ln𝑛

OPT pick top vertices = n



Greedy 2: Iteratively, pick both endpoints of an uncovered 
edge.

A Different Greedy Rule

Vertex cover = 6



Greedy 2: Pick Both endpoints of an 

uncovered edge 

𝐵2𝐵1 𝐵3
𝐵4

Greedy vertex cover = 16

OPT vertex cover = 8



Thm: Size of greedy (2) vertex cover is at most twice as big 
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒1, … , 𝑒𝑘 .

Since these edges do not touch, every valid cover must pick 
one vertex from each of these edges! 

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation



Set Cover

Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 

e.g., a company wants to hire employees with certain 
skills.   



Set Cover

Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 

Set cover = 4



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
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A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio



A Tight Example for Greedy
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A Tight Example for Greedy

OPT = 2Greedy = 5



Thm: If the best solution has k sets, greedy finds at most k 
ln(n) sets.

Pf: Suppose OPT=k 

There is set that covers 1/k fraction of remaining elements, 
since there are k sets that cover all remaining elements. 

So in each step, algorithm will cover 1/k fraction of 
remaining elements.

#elements uncovered after t steps 

≤ 𝑛 1 −
1

𝑘

𝑡

≤ 𝑛𝑒−
𝑡
𝑘

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation



Approximation Algorithm Summary

• The best known approximation algorithm for set cover is 
the greedy.

– It is NP-Complete to obtain better than ln(n) approximation ratio 
for set cover. 

• The best known approximation algorithm for vertex cover 
is the greedy. 

– It has been open for 40 years to obtain a polynomial time 
algorithm with approximation ratio better than 2

• There is a long list of questions we do not know the best 
approximation algorithm.

• https://en.wikipedia.org/wiki/Unique_games_conjecture

https://en.wikipedia.org/wiki/Unique_games_conjecture

