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Last Lecture

How to find topological ordering in polynomial time?

Algorithm (𝑛2 time):

Function 𝜋 = 𝑂𝑟𝑑𝑒𝑟(𝐺)

• Find a vertex 𝑣 in 𝐺 with no incoming edge (Time: 𝑛)

• Return (𝑣, 𝑂𝑟𝑑𝑒𝑟 𝐺 − {𝑣} ). (Total Time: 𝑚)

How to improve the runtime?

• Maintain the set of vertices with no incoming edge.

Alternatively, you can solve this problem by DFS.
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Topological order:  1, 2, 3, 4, 5, 6, 7

Example
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6 5 4

7 1

1 2 3 4 5 6 7



Summary for last few classes

• Terminology: vertices, edges, paths, connected component, tree, 
bipartite…

• Vertices vs Edges: 𝑚 = 𝑂(𝑛2) in general, 𝑚 = 𝑛 − 1 for trees

• BFS: Layers, queue, shortest paths, all edges go to same or 
adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological sort

• Techniques: Induction on vertices/layers
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Greedy Algorithms

• Hard to define exactly but can give general 

properties

• Solution is built in small steps

• Decisions on how to build the solution are made to 

maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the 

current step were the last step

• May be more than one greedy algorithm using 

different criteria to solve a given problem



Greedy Strategy

Goal:  Given currency denominations: 1, 5, 10, 25, 100, 

give change to customer using fewest number of coins.

Ex:  34¢.

Cashier's algorithm:  At each iteration, give the largest

coin valued ≤ the amount to be paid.

Ex: $2.89.

7



Greedy is not always Optimal

Observation:  Greedy algorithm is sub-optimal for US 

postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy:  100, 34, 1, 1, 1, 1, 1, 1.

Optimal:  70, 70.

Lesson: Greedy is short-sighted. Always chooses the most 

attractive choice at the moment. But this may lead to a dead-

end later.
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Greedy Algorithms

• Greedy algorithms
Easy to produce
Fast running times
Work only on certain classes of problems

• Hard part is showing that they are correct

• Two methods for proving that greedy algorithms do 
work
Greedy algorithm stays ahead

• At each step any other algorithm will have a worse 
value for some criterion that eventually implies 
optimality

Exchange Argument
• Can transform any other solution to the greedy solution 

at no loss in quality



Interval Scheduling
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Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

• Two jobs compatible if they don’t overlap.

• Goal: find maximum subset of mutually compatible jobs.
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Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as 
much as possible provided it is compatible with the jobs 
already taken.

Main question:

• What order?

• Does it give the Optimum answer?

• Why?
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Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as 

possible provided it is compatible with the jobs already taken.

[Shortest interval]  Consider jobs in ascending order of interval length  

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time]  Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time]  Consider jobs in ascending order of finish time 𝑓(𝑗).
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Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job 

provided it’s compatible with the ones already taken.

Implementation.  𝑂(𝑛log 𝑛).
• Remember job 𝑗∗ that was added last to 𝐴.

• Job 𝑗 is compatible with 𝐴 if 𝑠 𝑗 ≥ 𝑓(𝑗∗).
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Sort jobs by finish times so that f(1)  f(2)  ...  f(n).

𝑨 ← ∅
for j = 1 to n {

if (job j compatible with 𝑨)
𝑨 ← 𝑨 ∪ {𝒋}

}

return 𝑨



Greedy Alg: Example
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Correctness

• The output is compatible. (This is by construction.)

How to prove it gives maximum number of jobs?

Let 𝑖1, 𝑖2, 𝑖3, ⋯ be jobs picked by greedy (ordered by finish time)

Let 𝑗1, 𝑗2, 𝑗3, ⋯ be an optimal solution (ordered by finish time)

How about proving 𝑖𝑘 = 𝑗𝑘 for all 𝑘?

No, there can be multiple optimal solutions.

Idea: Prove that greedy outputs the “best” optimal solution.

Given two compatible orders, which is better?

The one finish earlier.

How to prove greedy gives the “best”?

Induction: it gives the “best” during every iteration.
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Correctness

Theorem:  Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)

Let 𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑘 be jobs picked by greedy, 𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑚 those 

in some optimal solution in order. 

We show 𝑓(𝑖𝑟)  𝑓(𝑗𝑟) for all 𝑟, by induction on 𝑟.

Base Case: 𝑖1 chosen to have min finish time, so 𝑓(𝑖1)  𝑓(𝑗1). 

IH: 𝑓(𝑖𝑟)  𝑓 𝑗𝑟 for some r

IS: Since 𝑓 𝑖𝑟 ≤ 𝑓 𝑗𝑟 ≤ 𝑠(𝑗𝑟+1), 𝑗𝑟+1 is among the candidates 

considered by greedy when it picked 𝑖𝑟+1, & it picks min finish, 

so 𝑓 𝑖𝑟+1 ≤ 𝑓(𝑗𝑟+1)

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗𝑘+1 is among 

(nonempty) set of candidates for 𝑖𝑘+1.
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What if the jobs are weighted?

Suppose each task has a weight. 

Goal: Maximum sum of weights of finished tasked.

[Shortest interval]  Consider jobs in ascending order of interval length  

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time]  Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time]  Consider jobs in ascending order of finish time 𝑓(𝑗).

[Highest Rate]  Consider jobs in descending order of 𝑤(𝑗)/(𝑓 𝑗 − 𝑠 𝑗 ).
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You can’t solve it using greedy.

We will discuss this again later.



Interval Partitioning

Technique: Structural



Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

Goal:  find minimum number of classrooms to schedule all lectures so that no 

two occur at the same time in the same room.
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Interval Partitioning
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Note: graph coloring is very hard in 

general, but graphs corresponding to 

interval intersections are simpler.



A Better Schedule

This one uses only 3 classrooms
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 

finish time:  assign lecture to any compatible classroom.

Correctness: This is wrong!
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Sort intervals by finish time so that f1  f2  ...  fn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}    



Example
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 

start time:  assign lecture to any compatible classroom.

Implementation: O(n log n) time
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Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}    



A Structural Lower-Bound on OPT

Def.  The depth of a set of open intervals is the maximum 

number that contains any given time.

Key observation.  Number of classrooms needed   depth.

Ex:  Depth of schedule below = 3 schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of 

intervals?
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Correctness

Observation:  Greedy algorithm never schedules two incompatible 

lectures in the same classroom.

Theorem:  Greedy algorithm is optimal.

Proof (exploit structural property).  

Let 𝑑 = number of classrooms that the greedy algorithm allocates.

Classroom 𝑑 is opened because we needed to schedule a job, say 𝑗, 
that is incompatible with all 𝑑 − 1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than 𝑠(𝑗).

Thus, we have 𝑑 lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e. depth ≥ 𝑑

“OPT Observation”  all schedules use  depth classrooms, 

so 𝑑 = depth and greedy is optimal ▪
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