
CSE 421

Greedy Methods

Yin Tat Lee

1

HW2 is out.

2

Last Lecture

How to find topological ordering in polynomial time?

Algorithm (𝑛2 time):

Function 𝜋 = 𝑂𝑟𝑑𝑒𝑟(𝐺)

• Find a vertex 𝑣 in 𝐺 with no incoming edge (Time: 𝑛)

• Return (𝑣, 𝑂𝑟𝑑𝑒𝑟 𝐺 − {𝑣}). (Total Time: 𝑚)

How to improve the runtime?

• Maintain the set of vertices with no incoming edge.

Alternatively, you can solve this problem by DFS.

3

Example

2 3

6 5 4

7 1

4

Topological order: 1, 2, 3, 4, 5, 6, 7

Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Summary for last few classes

• Terminology: vertices, edges, paths, connected component, tree,
bipartite…

• Vertices vs Edges: 𝑚 = 𝑂(𝑛2) in general, 𝑚 = 𝑛 − 1 for trees

• BFS: Layers, queue, shortest paths, all edges go to same or
adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological sort

• Techniques: Induction on vertices/layers

5

6

Greedy Algorithms

• Hard to define exactly but can give general

properties

• Solution is built in small steps

• Decisions on how to build the solution are made to

maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the

current step were the last step

• May be more than one greedy algorithm using

different criteria to solve a given problem

Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100,

give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the largest

coin valued ≤ the amount to be paid.

Ex: $2.89.

7

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US

postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most

attractive choice at the moment. But this may lead to a dead-

end later.

8

9

Greedy Algorithms

• Greedy algorithms
Easy to produce
Fast running times
Work only on certain classes of problems

• Hard part is showing that they are correct

• Two methods for proving that greedy algorithms do
work
Greedy algorithm stays ahead

• At each step any other algorithm will have a worse
value for some criterion that eventually implies
optimality

Exchange Argument
• Can transform any other solution to the greedy solution

at no loss in quality

Interval Scheduling

Time
0 1 2 3 4 5 6 7 8 9 1

0
1
1

f
g

h

e

a
b

c
d

h

e

b

Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

• Two jobs compatible if they don’t overlap.

• Goal: find maximum subset of mutually compatible jobs.

11

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as
much as possible provided it is compatible with the jobs
already taken.

Main question:

• What order?

• Does it give the Optimum answer?

• Why?

12

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as

possible provided it is compatible with the jobs already taken.

[Shortest interval] Consider jobs in ascending order of interval length

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

13

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job

provided it’s compatible with the ones already taken.

Implementation. 𝑂(𝑛log 𝑛).
• Remember job 𝑗∗ that was added last to 𝐴.

• Job 𝑗 is compatible with 𝐴 if 𝑠 𝑗 ≥ 𝑓(𝑗∗).

14

Sort jobs by finish times so that f(1) f(2) ... f(n).

𝑨 ← ∅
for j = 1 to n {

if (job j compatible with 𝑨)
𝑨 ← 𝑨 ∪ {𝒋}

}

return 𝑨

Greedy Alg: Example

15

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

B CA ED F G H

Correctness

• The output is compatible. (This is by construction.)

How to prove it gives maximum number of jobs?

Let 𝑖1, 𝑖2, 𝑖3, ⋯ be jobs picked by greedy (ordered by finish time)

Let 𝑗1, 𝑗2, 𝑗3, ⋯ be an optimal solution (ordered by finish time)

How about proving 𝑖𝑘 = 𝑗𝑘 for all 𝑘?

No, there can be multiple optimal solutions.

Idea: Prove that greedy outputs the “best” optimal solution.

Given two compatible orders, which is better?

The one finish earlier.

How to prove greedy gives the “best”?

Induction: it gives the “best” during every iteration.

16

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)

Let 𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑘 be jobs picked by greedy, 𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑚 those

in some optimal solution in order.

We show 𝑓(𝑖𝑟) 𝑓(𝑗𝑟) for all 𝑟, by induction on 𝑟.

Base Case: 𝑖1 chosen to have min finish time, so 𝑓(𝑖1) 𝑓(𝑗1).

IH: 𝑓(𝑖𝑟) 𝑓 𝑗𝑟 for some r

IS: Since 𝑓 𝑖𝑟 ≤ 𝑓 𝑗𝑟 ≤ 𝑠(𝑗𝑟+1), 𝑗𝑟+1 is among the candidates

considered by greedy when it picked 𝑖𝑟+1, & it picks min finish,

so 𝑓 𝑖𝑟+1 ≤ 𝑓(𝑗𝑟+1)

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗𝑘+1 is among

(nonempty) set of candidates for 𝑖𝑘+1.
17

What if the jobs are weighted?

Suppose each task has a weight.

Goal: Maximum sum of weights of finished tasked.

[Shortest interval] Consider jobs in ascending order of interval length

𝑓 𝑗 − 𝑠(𝑗).

[Earliest start time] Consider jobs in ascending order of start time 𝑠(𝑗).

[Earliest finish time] Consider jobs in ascending order of finish time 𝑓(𝑗).

[Highest Rate] Consider jobs in descending order of 𝑤(𝑗)/(𝑓 𝑗 − 𝑠 𝑗).

18

You can’t solve it using greedy.

We will discuss this again later.

Interval Partitioning

Technique: Structural

Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

Goal: find minimum number of classrooms to schedule all lectures so that no

two occur at the same time in the same room.

20Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

Interval Partitioning

21Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

C

B

A

E

D G

F

J

H

I

Note: graph coloring is very hard in

general, but graphs corresponding to

interval intersections are simpler.

A Better Schedule

This one uses only 3 classrooms

22

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

finish time: assign lecture to any compatible classroom.

Correctness: This is wrong!

23

Sort intervals by finish time so that f1 f2 ... fn.

d 0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

}

Example

24

Time
0 1 2 3 4 5 6

d

a

b

c

Time
0 1 2 3 4 5 6

d

a

b

c

Greedy by finish time gives: OPT:

Time
0 1 2 3 4 5 6

da

b c

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

start time: assign lecture to any compatible classroom.

Implementation: O(n log n) time

25

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

}

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum

number that contains any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?

26Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Correctness

Observation: Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Proof (exploit structural property).

Let 𝑑 = number of classrooms that the greedy algorithm allocates.

Classroom 𝑑 is opened because we needed to schedule a job, say 𝑗,
that is incompatible with all 𝑑 − 1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than 𝑠(𝑗).

Thus, we have 𝑑 lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e. depth ≥ 𝑑

“OPT Observation” all schedules use depth classrooms,

so 𝑑 = depth and greedy is optimal ▪

27

