CSE 421

Greedy Methods

Yin Tat Lee

Last Lecture

How to find topological ordering in polynomial time?

Algorithm (n^{2} time):
Function $\pi=\operatorname{Order}(G)$
\rightarrow Find a vertex v in G with no incoming edge (Time: n)

- Return ($v, \operatorname{Order}(G-\{v\})$). (Total Time: m)

How to improve the runtime?

- Maintain the set of vertices with no incoming edge.

Alternatively, you can solve this problem by DFS.

Example

Example

Topological order: 1, 2, 3, 4, 5, 6, 7

Summary for last few classes

- Terminology: vertices, edges, paths, connected component, tree, bipartite...
- Vertices vs Edges: $m=O\left(n^{2}\right)$ in general, $m=n-1$ for trees
- BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer
- DFS: recursion/stack; all edges ancestor/descendant
- Algorithms: Connected Comp, bipartiteness, topological sort
- Techniques: Induction on vertices/layers

Greedy Algorithms

- Hard to define exactly but can give general properties
- Solution is built in small steps
- Decisions on how to build the solution are made to maximize some criterion without looking to the future
- Want the 'best' current partial solution as if the current step were the last step
- May be more than one greedy algorithm using different/criteria to solve a given problem

Greedy Strategy

Goal: Given currency denominations: $1,5,10,25,100$, give change to customer using fewest number of coins.

Ex: 34.

4
Cashier's algorithm: At each iteration, give the largest coin valued \leq the amount to be paid.

Ex: \$2.89.

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US postal denominations: $1,10,21,34,70,100,350,1225,1500$.

Counterexample. 140¢.
Greedy: 100, 34, 1, 1, 1, 1, 1, 1. Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most attractive choice at the moment. But this may lead to a deadend later.

Greedy Algorithms

- Greedy algorithms

Easy to produce
Fast running times
Work only on certain classes of problems

- Hard part is showing that they are correct
- Two methods for proving that greedy algorithms do work
Greedy algorithm stays ahead
- At each step any other algorithm will have a worse value for some criterion that eventually implies optimality
Exchange Argument
- Can transform any other solution to the greedy solution at no loss in quality

Interval Scheduling

Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

Main question:

- What order?
- Does it give the Optimum answer?
- Why?

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.
[Shortest interval] Consider jobs in ascending order of interval length L $f(j)-s(j)$.

$$
\left(2 x \operatorname{xup} p r o x_{1} m_{n} t_{l}\right)
$$

Zarliest start time] Consider jobs in ascending order of start time $s(j)$.

TIF [Earliest finish time] Consider jobs in ascending order of finish time $f(j)$.

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f(1) \leqf(2) \leq .. S f(n).
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
        A\leftarrowA\cup{j}
}
return A
```

Implementation. $O(n \log n)$.

- Remember job j^{*} that was added last to A.
- Job j is compatible with A if $s(j) \geq f\left(j^{*}\right)$.

Greedy Alg: Example

Correctness

- The output is compatible. (This is by construction.)
\downarrow How to prove it gives maximum number of jobs?
$\left[\right.$ Let $\overparen{\hat{i}_{1}}, i_{2}, i_{3}, \cdots$ be jobs picked by greedy (ordered by finish time) \leftarrow
Let $j_{1}, j_{2}, j_{3}, \cdots$ be an optimal solution (ordered by finish time) \longleftarrow How about proving $i_{k}=j_{k}$ for all k ?]
No, there can be multiple optimal solutions.
Idea: Prove that greedy outputs the "best" optimal solution.
Given two compatible orders, which is better?
The one finish earlier.
How to prove greedy gives the "best"?
Induction: it gives the "best" during every iteration.

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: "Greedy stays ahead")

Let $i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ be jobs picked by greedy, $j_{1}, j_{2}, j_{3}, \cdots, j_{m}$ those in some optimal solution in order.
We show $f\left(i_{r}\right) \leq f\left(j_{r}\right)$ for all r, by induction on r.
Base Case: i_{1} chosen to have min finish time, so $f\left(i_{1}\right) \leq f\left(j_{1}\right)$. IH: $f\left(i_{r}\right) \leq f\left(j_{r}\right)$ for some r
IS: Since $f\left(i_{r}\right) \leq f\left(j_{r}\right) \leq s\left(j_{r+1}\right), j_{r+1}$ is among the candidates considered by greedy when it picked i_{r+1}, \& it picks min finish, so $f\left(i_{r+1}\right) \leq f\left(j_{r+1}\right)$

Observe that we must have $k \geq m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}.

What if the jobs are weighted?

Suppose each task has a weight.
You can't solve it using greedy. We will discuss this again later.

Goal: Maximum sum of weights of finished tasked.
[Shortest interval] Consider jobs in ascending order of interval length $f(j)-s(j)$.
[Earliest start time] Consider jobs in ascending order of start time $s(j)$.
[Earliest finish time] Consider jobs in ascending order of finish time $f(j)$.
[Highest Rate] Consider jobs in descending order of w(i) $/(f(j)-s(j))$.

Interval Partitioning
 Technique: Structural

Interval Partitioning

Lecture j starts at $s(j)$ and finishes at $f(j)$.
Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning

Note: graph coloring is very hard in general, but graphs corresponding to

A Better Schedule

This one uses only 3 classrooms

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of finish time: assign lecture to any compatible classroom.

Correctness: This is wrong!

Example

Greedy by finish time gives:

Time

Time

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{s}{1}{}\leq\mp@subsup{s}{2}{}\leq\ldots, \leq sn
d}\leftarrow
for j = 1 to n {
    if (lect j is compatible with some classroom k, 1\leqk\leqd)
    schedule lecture j in classroom k
    else
    allocate a new classroom d + 1
    schedule lecture j in classroom d + 1
    d}\leftarrowd+
}
```

Implementation: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contains any given time.

Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.
Q. Does there always exist a schedule equal to depth of intervals?

Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Proof (exploit structural property).
Let $d=$ number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ previously used classrooms.
Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than $s(j)$.
Thus, we have d lectures overlapping at time $s(j)+\epsilon$, i.e. depth $\geq d$
"OPT Observation" \Rightarrow all schedules use \geq depth classrooms,
so $d=$ depth and greedy is optimal "

