CSE 421: Introduction to Algorithms

Yin Tat Lee
Guest Lecturer: Jeremy Lin (TA)

Lecture Outline:

- Spanning Trees / Minimum Spanning Trees
- Cut Property
- Cycle Property
- Kruskal's Algorithm
- Union Find Data Structure
- (Briefly) talk about Prim's and Reverse-Delete algorithms

Spanning Trees

- A tree T is a spanning tree of a graph G if:
- T is a valid tree (obviously)
- Tincludes all vertices in G
- Tincludes only edges in G (but possibly not all edges in G)
- More formally, if $G=(V, E)$ and $T=\left(V^{\prime}, E^{\prime}\right)$ then:
- $V^{\prime}=V$
- $\left|E^{\prime}\right|=\left|V^{\prime}\right|-1$
- $E^{\prime} \in E$

Minimum Spanning Trees (MST)

- An MST is the lowest-cost spanning tree of a graph

Minimum Spanning Trees (MST)

- A graph may have multiple possible MSTs!
- Trivial example:

Yesterday: Dijkstra's Algorithm

- Find the shortest path from vertex S to all other vertices in G
- Guaranteed non-negative edges, etc.
- If you draw out all the shortest paths calculated on G, do they always form a (spanning) tree?
- (Assume no two paths from S to T "tied" for shortest)

Yesterday: Dijkstra's Algorithm

- Find the shortest path from vertex S to all other vertices in G
- Guaranteed non-negative edges, etc.
- If you draw out all the shortest paths calculated on G, do they always form a spanning tree? Yes!
- Proof Sketch: (Contradiction)
- Suppose that the graph G^{\prime} formed by connecting the shortest paths as described above is not a tree \rightarrow it must have a cycle by definition)
- Let T be a vertex in a cycle. Therefore, there must be two paths from S to T
- One of them is not used for any shortest paths, since for any of T's neighbors T^{\prime} we will always path from S to T^{\prime} by taking the shorter path from S to T first, then the path from T to T
- But then this contradicts how we constructed G^{\prime} !

Yesterday: Dijkstra's Algorithm

- Find the shortest path from vertex S to all other vertices in G
- Guaranteed non-negative edges, etc.
- If you draw out all the shortest paths calculated:
- Do they form a (spanning) tree? Yes!
- Do they form a minimum spanning tree?

Yesterday: Dijkstra's Algorithm

- Find the shortest path from vertex S to all other vertices in G
- Guaranteed non-negative edges, etc.
- If you draw out all the shortest paths calculated:
- Do they form a minimum spanning tree? No!
- Proof: (counterexample)

Why MSTs?

- LOTS of applications
- Network Design:
- Roads, TV cables, Electrical wires, etc.
- Approximations for (NP-) hard problems
- Travelling Salesperson
- And many more!

Properties of MSTs

- Cut Property
- Cycle Property

Cuts

- A cut is any partition of the vertices in G into two disjoint sets of vertices (denoted by (A, B))
- The vertices in each set don't need to be connected to each other
- This will come up again later! (~Lecture 18 on flows and cuts)

Cut Property

- The lightest (least weight) edge connecting the two sets of vertices in each cut must be in every MST
- If there are multiple edges tied for the lowest weight then all MSTs must contain at least one of them

Cut Property

- General Proof: (contradiction)

- Say a cut (A, B) results in the two sets of vertices A and B. Say an MST includes an edge E going across the cut (connecting A and B).
- If there exists a lighter edge E^{\prime} going across the cut, then we would get a "better" MST by removing E and adding E' instead
- But this is a contradiction!

Cut Property

- General Proof: (contradiction)

- Say a cut (A, B) results in the two sets of vertices A and B. Say an MST includes an edge E going across the cut (connecting A and B).
- If there exists a lighter edge E^{\prime} going across the cut, then we would get a "better" MST by removing E and adding E' instead.
- But this is a contradiction!
- Minor details to think about:
- Prove that replacing E with E' creates a valid tree - (Hint: prove it doesn't create a cycle first)

Cycle Property

- The heaviest (most weight) edge in every cycle in G cannot be in any MST
- If there are multiple edges tied for the highest weight then all MSTs can contain at most all but one of them

Cycle Property

- General Proof: (contradiction)

- Say that while constructing the MST we keep (all of the) heaviest edges in a cycle C and remove one of the lighter edges E^{\prime} instead
- But then we will be able to construct a "better" MST by removing one of the heaviest edges and adding E' back in!
- But this is a contradiction!

Cycle Property

- General Proof: (contradiction)

- Say that while constructing the MST we keep (all of the) heaviest edges in a cycle C and remove one of the lighter edges E^{\prime} instead
- But then we will be able to construct a "better" MST by removing one of the heaviest edges and adding E' back in!
- But this is a contradiction!
- Minor detail:
- Prove that replacing the heaviest edge forms a tree
- General sketch:
- Doing this doesn't create a cycle
- Keep number of edges the same
- -> by Pigeonhole Principle we form a valid tree still

Using Cuts and Cycles to build MSTs

- Kruskal's Algorithm
- Prim's Algorithm
- Reverse-Delete Algorithm
- (and more!)

Kruskal's Algorithm:

- Greedy Algorithm!
- Greedy Rule: Add the lowest-cost edge that doesn't create a cycle
- Which property discussed previously does Kruskal's use?

Kruskal's Algorithm:

- Greedy Algorithm!
- Greedy Rule: Add the lowest-cost edge that doesn't create a cycle
- Which property discussed previously does Kruskal's use?
- Uses both Cut and Cycle Properties!

Kruskal's Execution:

Original Graph

Minimum Spanning Tree

Kruskal's Pseudocode:

- Let w_{e} denote the weight of edge e.

Kruskals(V, E):

sort E in non-decreasing order ($w_{0} \leq w_{1} \ldots \leq w_{m}$)
Initialize each vertex in its own "island"
for $\mathrm{i}=1$... m :
let $e_{i}=(u, v)$
if u and v are in different connected components: add e_{i} into the MST
merge the connected components containing u, v
return the MST

Kruskal's Pseudocode:

- Let w_{e} denote the weight of edge e.

Kruskals(V, E):

sort E in non-decreasing order $\left(w_{0} \leq w_{1} \ldots \leq w_{m}\right)$
Initialize each vertex in its own "island"
for $i=1$... m :
let $e_{i}=(u, v)$
How to do this efficiently?
(easy $O(n \log n$) implementation) if u and v are in different "islands": add e_{i} into the MST merge the "islands" containing u and v
return the MST

Union Find!!!

- Both a data structure and an algorithm
- Runtime:
- $O(\log n)$ for checking if two nodes are in the same group $)$
- O($\log n$) for merging two groups ©

Union Find

- For each node, keep track of two things:
- Pointer to its "parent"
- "Depth" of its tree (length of longest path ending at that node)
- All pointers initially uninitialized, "depth" $=0$

Depth
Nodes

Union Find

- To check whether A and B are part of the same "island":
- Follow the pointers up to the root of the tree, check if identical

Depth
Nodes

Union Find

- To merge two "islands":
- First find the root of each tree
- Assign the lower-depth root to point to the higher-depth root
- If roots are the same depth tiebreak arbitrarily
- Adjust the depths if necessary
(1)

Union Find Example

- Merge $(2,6)$

Depth
Nodes

Union Find Example

- Merge(4, 1)

Depth
Nodes

Union Find Example

- CheckSame(1,2)
- CheckSame(6,2)

Depth
Nodes

Union Find Example

- Merge $(5,4)$

Depth
Nodes

Union Find Example

- Merge $(2,4)$

Union Find Example

- CheckSame $(5,1)$
- CheckSame $(6,2)$

Union Find Runtime Proof:

- Claim: If the label of a node is k, then there must be $\geq 2^{k}$ elements in the tree
- Equivalently, if there are n nodes in a tree, the depth of the tree is at most $\log (n)$
- General Proof: (Induction)
- Base case: True initially
- Inductive step: Each step we merge a tree of depth at most $\log (n)$
- From inductive hypothesis it also must contain at most n elements
- Depth increases by at most 1 , number of elements can double
-> Inductive hypothesis holds!
- As a consequence, union find is guaranteed to be $\log (n)$
- Or better! (See Tarjan's 1975 paper for details if you want)

Kruskal's Runtime:

Kruskals(V, E):

$O(M \log M) \quad$ sort E in non-decreasing order $O(N)$ Initialize each vertex in its own "island"

$O(M \log N) \quad$ for $i=1 \ldots m$: let $e_{i}=(u, v)$

```
O(log N) if u and v are in different "islands":
    add e}\mp@subsup{e}{i}{}\mathrm{ into the MST
O(logN) merge the "islands" containing u and v
    return the MST
```

Overall: $O(M \log M)=O(M \log N)$

Kruskal's Proof of Correctness:

- Add the lowest-cost edge that doesn't create a cycle
-> Equivalently:
- If adding e to T creates a cycle, then delete it according to the cycle property
- Otherwise, add it according to the cut property

Other MST greedy algorithms:

- Prim's Algorithm: Similar to Dijkstra's Algorithm
- Start from an arbitrary vertex
- At each step add the lowest-weight edge coming out of the tree
- Straightforward application of cut property
- Reverse-Delete:
- Keep deleting the highest-weight edge unless it disconnects the graph
- (Somewhat) straightforward application of cycle property

