
CSE 421: Introduction 
to Algorithms

Yin Tat Lee

Guest Lecturer: Jeremy Lin (TA)

https://www.youtube.com/watch?v
=dQw4w9WgXcQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Lecture Outline:

• Spanning Trees / Minimum Spanning Trees

• Cut Property

• Cycle Property

• Kruskal’s Algorithm
• Union Find Data Structure

• (Briefly) talk about Prim’s and Reverse-Delete algorithms

https://www.you
tube.com/watch
?v=dQw4w9WgX
cQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Spanning Trees

• A tree T is a spanning tree of a graph G if:
• T is a valid tree (obviously)
• T includes all vertices in G
• T includes only edges in G (but possibly not all edges in G)

• More formally, if 𝐺 = 𝑉, 𝐸 and 𝑇 = (𝑉′, 𝐸′) then:
• 𝑉′ = 𝑉

• 𝐸′ = 𝑉′ − 1

• 𝐸′ ∈ 𝐸

htt
ps:
//w
ww
.yo
utu
be.
co
m/
wat
ch?
v=d
Qw
4w
9W
gXc
Q

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Minimum Spanning Trees (MST)

• An MST is the lowest-cost spanning tree of a graph

0

42
9

2

1

6

4

2
0

2

2

1

6

2
https://www.y
outube.com/w
atch?v=dQw4
w9WgXcQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Minimum Spanning Trees (MST)

• A graph may have multiple possible MSTs!

• Trivial example:

3

33
3

3

3

3

3

3

3
3

3

3

3

3

3

33

3

3

3

https://www.youtube.com/watch?v=dQw4w9WgXcQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Yesterday: Dijkstra’s Algorithm

• Find the shortest path from vertex S to all other vertices in G
• Guaranteed non-negative edges, etc.

• If you draw out all the shortest paths calculated on G, do they always 
form a (spanning) tree?
• (Assume no two paths from S to T “tied” for shortest)

https://www.yo
utube.com/wat
ch?v=dQw4w9
WgXcQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Yesterday: Dijkstra’s Algorithm

• Find the shortest path from vertex S to all other vertices in G
• Guaranteed non-negative edges, etc.

• If you draw out all the shortest paths calculated on G, do they always 
form a spanning tree? Yes!

• Proof Sketch: (Contradiction)
• Suppose that the graph G’ formed by connecting the shortest paths as described 

above is not a tree -> it must have a cycle by definition)
• Let T be a vertex in a cycle. Therefore, there must be two paths from S to T

• One of them is not used for any shortest paths, since for any of T’s neighbors T’ we will always 
path from S to T’ by taking the shorter path from S to T first, then the path from T to T’

• But then this contradicts how we constructed G’!

http
s://
ww
w.yo
utub
e.co
m/w
atch
?v=
dQw
4w9
WgX
cQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Yesterday: Dijkstra’s Algorithm

• Find the shortest path from vertex S to all other vertices in G
• Guaranteed non-negative edges, etc.

• If you draw out all the shortest paths calculated:
• Do they form a (spanning) tree? Yes!
• Do they form a minimum spanning tree?

https://ww
w.youtube.c
om/watch?v
=dQw4w9W
gXcQ

https://www.youtube.com/watch?v=dQw4w9WgXcQ


Yesterday: Dijkstra’s Algorithm

• Find the shortest path from vertex S to all other vertices in G
• Guaranteed non-negative edges, etc.

• If you draw out all the shortest paths calculated:
• Do they form a minimum spanning tree? No!
• Proof: (counterexample)

5

5

1

5

1

1
S

2

1

5

1

2

1
S5

25
2

1

5

1

1
S

2



Why MSTs?

• LOTS of applications
• Network Design:

• Roads, TV cables, Electrical wires, etc.

• Approximations for (NP-) hard problems
• Travelling Salesperson

• And many more!



Properties of MSTs

• Cut Property

• Cycle Property



Cuts

• A cut is any partition of the vertices in G into two disjoint 
sets of vertices (denoted by (𝐴, 𝐵))
• The vertices in each set don’t need to be connected to each other
• This will come up again later! (∼Lecture 18 on flows and cuts)

5

25
2

1

5

1

2

1

5

25
2

1

5

1

1



Cut Property

• The lightest (least weight) edge connecting the two sets of 
vertices in each cut must be in every MST
• If there are multiple edges tied for the lowest weight then all 

MSTs must contain at least one of them

5

25
2

1

5

1

2

1

5

25
2

1

5

1

1

2

A B

C

D

E

F

G

A B

C

D

E G

F



Cut Property

• General Proof: (contradiction)
• Say a cut (𝐴, 𝐵) results in the two sets of vertices A and B. Say an 

MST includes an edge E going across the cut (connecting A and B).
• If there exists a lighter edge E’ going across the cut, then we 

would get a “better” MST by removing E and adding E’ instead.
• But this is a contradiction!

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Cut Property

• General Proof: (contradiction)
• Say a cut (𝐴, 𝐵) results in the two sets of vertices A and B. Say an 

MST includes an edge E going across the cut (connecting A and B).
• If there exists a lighter edge E’ going across the cut, then we 

would get a “better” MST by removing E and adding E’ instead.
• But this is a contradiction!
• Minor details to think about:

• Prove that replacing E with E’ creates a valid tree
• (Hint: prove it doesn’t create a cycle first)

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Cycle Property

• The heaviest (most weight) edge in every cycle in G cannot 
be in any MST
• If there are multiple edges tied for the highest weight then all 

MSTs can contain at most all but one of them

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Cycle Property

• General Proof: (contradiction)
• Say that while constructing the MST we keep (all of the) heaviest 

edges in a cycle C and remove one of the lighter edges E’ instead
• But then we will be able to construct a “better” MST by removing 

one of the heaviest edges and adding E’ back in!
• But this is a contradiction!

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Cycle Property

• General Proof: (contradiction)
• Say that while constructing the MST we keep (all of the) heaviest 

edges in a cycle C and remove one of the lighter edges E’ instead
• But then we will be able to construct a “better” MST by removing 

one of the heaviest edges and adding E’ back in!
• But this is a contradiction!

• Minor detail:
• Prove that replacing the heaviest edge forms a tree
• General sketch:

• Doing this doesn’t create a cycle

• Keep number of edges the same

• -> by Pigeonhole Principle we form a valid tree still

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Using Cuts and Cycles to build MSTs

• Kruskal’s Algorithm

• Prim’s Algorithm

• Reverse-Delete Algorithm

• (and more!)



Kruskal’s Algorithm:

• Greedy Algorithm!
• Greedy Rule: Add the lowest-cost edge that doesn’t create a cycle
• Which property discussed previously does Kruskal’s use?

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Kruskal’s Algorithm:

• Greedy Algorithm!
• Greedy Rule: Add the lowest-cost edge that doesn’t create a cycle
• Which property discussed previously does Kruskal’s use?

• Uses both Cut and Cycle Properties!

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Kruskal’s Execution:

5

25
2

1

5

1

1

2

A B

C

D

E G

F

5

25
2

1

5

1

1

2

A B

C

D

E G

F

Original Graph Minimum Spanning Tree



Kruskal’s Execution:

5

25
2

1

5

1

1

2

A B

C

D

E G

F

5

25
2

1

5

1

1

2

A B

C

D

E G

F

Original Graph Minimum Spanning Tree



Kruskal’s Execution:

5

25
2

1

5

1

1

2

A B

C

D

E G

F

5

25
2

1

5

1

1

2

A B

C

D

E G

F

Original Graph Minimum Spanning Tree



Kruskal’s Execution:

5

25
2

1

5

1

1

2

A B

C

D

E G

F

5

25
2

1

5

1

1

2

A B

C

D

E G

F

Original Graph Minimum Spanning Tree

Adds a cycle



Kruskal’s Pseudocode:

• Let 𝑤𝑒 denote the weight of edge e.

Kruskals(V, E):

sort E in non-decreasing order (𝑤0 ≤ 𝑤1… ≤ 𝑤𝑚)

Initialize each vertex in its own “island”

for i = 1 … m:

let 𝑒𝑖 = (𝑢, 𝑣)

if u and v are in different connected components:

add 𝑒𝑖 into the MST

merge the connected components containing u,v

return the MST

5

25
2

1

5

1

1

2

A B

C

D

E G

F



Kruskal’s Pseudocode:

• Let 𝑤𝑒 denote the weight of edge e.

Kruskals(V, E):

sort E in non-decreasing order (𝑤0 ≤ 𝑤1… ≤ 𝑤𝑚)

Initialize each vertex in its own “island”

for i = 1 … m:

let 𝑒𝑖 = (𝑢, 𝑣)

if u and v are in different “islands”:

add 𝑒𝑖 into the MST

merge the “islands” containing u and v

return the MST

5

25
2

1

5

1

1

2

A B

C

D

E G

F

How to do this efficiently?
(easy O(n log n) implementation)



Union Find!!!

• Both a data structure and an algorithm

• Runtime:
• O(log n) for checking if two nodes are in the same group ☺
• O(log n) for merging two groups ☺



Union Find

• For each node, keep track of two things:
• Pointer to its “parent”
• “Depth” of its tree (length of longest path ending at that node)

• All pointers initially uninitialized, “depth” = 0

1 2 3 4 5 6

0 0 0 0 0 0 Depth

Nodes



Union Find

• To check whether A and B are part of the same “island”:
• Follow the pointers up to the root of the tree, check if identical

1 2 3 4 5 6

0 0 0 0 0 0 Depth

Nodes



Union Find

• To merge two “islands”:
• First find the root of each tree
• Assign the lower-depth root to point to the higher-depth root

• If roots are the same depth tiebreak arbitrarily

• Adjust the depths if necessary

1 2 3 4 5 6

0 0 0 0 0 0 Depth

Nodes



Union Find Example

• Merge(2, 6)

1 2 3 4 5

6

0 1 0 0 0

0

Depth

Nodes



Union Find Example

• Merge(4, 1)

1

2 3 4 5

6

0

1 0 1 0

0

Depth

Nodes



Union Find Example

• CheckSame(1,2)

• CheckSame(6,2)

1

2 3 4 5

6

0

1 0 1 0

0

Depth

Nodes



Union Find Example

• Merge(5, 4)

1

2 3 4

56

0

1 0 1

00

Depth

Nodes



Union Find Example

• Merge(2, 4)

1 23

4

5

6

0 10

2

0

0



Union Find Example

• CheckSame(5, 1)

• CheckSame(6, 2)

1 23

4

5

6

0 10

2

0

0



Union Find Runtime Proof:

• Claim: If the label of a node is k, then there must be ≥ 2𝑘

elements in the tree
• Equivalently, if there are n nodes in a tree, the depth of the tree is at 

most log(n)

• General Proof: (Induction)
• Base case: True initially
• Inductive step: Each step we merge a tree of depth at most log(n)

• From inductive hypothesis it also must contain at most n elements
• Depth increases by at most 1, number of elements can double

-> Inductive hypothesis holds!

• As a consequence, union find is guaranteed to be log(n)
• Or better! (See Tarjan’s 1975 paper for details if you want)



Kruskal’s Runtime:

Kruskals(V, E):

sort E in non-decreasing order

Initialize each vertex in its own “island”

for i = 1 … m:

let 𝑒𝑖 = (𝑢, 𝑣)

if u and v are in different “islands”:

add 𝑒𝑖 into the MST

merge the “islands” containing u and v

return the MST

5

25
2

1

5

1

1

2

A B

C

D

E G

F
O(M log M)

O(N)

O(log N)

O(M log N)

O(log N)

Overall: O(M log M) = O(M log N)



Kruskal’s Proof of Correctness:

• Add the lowest-cost edge that doesn’t create a cycle

-> Equivalently:
• If adding e to T creates a cycle, then delete it according to the 
cycle property

• Otherwise, add it according to the cut property



Other MST greedy algorithms:

• Prim’s Algorithm: Similar to Dijkstra’s Algorithm
• Start from an arbitrary vertex
• At each step add the lowest-weight edge coming out of the tree
• Straightforward application of cut property

• Reverse-Delete:
• Keep deleting the highest-weight edge unless it disconnects the graph
• (Somewhat) straightforward application of cycle property


