
CSE 421

Greedy: Huffman Codes

Yin Tat Lee

1

Experiment Y: Iteration 1

3

• Iteration 1:

More quizzes or polls (Connor Aksama)

3

Compression Example

3

• 100k file, 6 letter alphabet:

• File Size:

ASCII, 8 bits/char: 800kbits

Better?

23 > 6; 3 bits/char: 300kbits

Even better:

2.52 bits/char 74%*2 +26%*4: 252kbits

Optimal?

• Prefix codes

no code word is prefix of another (unique decoding)

E.g.:

a 00

b 01

d 10

c 1100

e 1101

f 1110

Why not:

00

01

10

110

1101

1110

1101110 = cf or ec?

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

Prefix Codes = Trees
a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

f a b

1 0 1 0 0 0 0 0 1

f a b

100

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 1

0 10 1

0 1

100

86

a:45

14

e:9b:13

28

c:12 d:16

14

f:5

0 1

0 1

0 10 10 1

58

0

1 1 0 0 0 1 0 1

5

Quiz

Given 𝑘 symbols. Show that there is a

prefix code with length 𝑙𝑖 for symbol 𝑖
if

𝑖

2−𝑙𝑖 = 1.

6

Greedy Idea #1
a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

Put most frequent

under root, then recurse …

a:45

100

.
. .

. .

6

Greedy Idea #1

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

7

• Top down: Put most frequent

under root, then recurse

• Too greedy:

unbalanced tree
.45*1 + .16*2 + .13*3 … = 2.34

not too bad, but imagine if all

freqs were ~1/6:

(1+2+3+4+5+5)/6=3.33

a:45

100

d:16

55

b:13

29

.
.
.

Greedy Idea #2

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

8

• Top down: Divide letters
into 2 groups, with ~50%
weight in each; recurse
(Shannon-Fano code)

• Again, not terrible
2*.5+3*.5 = 2.5

• But this tree
can easily be
improved! (How?)

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9
Idea: To avoid swapping, the lowest frequent

letters must be at the bottom.

Greedy idea #3 a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

9

• Bottom up: Group

least frequent letters

near bottom 100

f:5

14

.
.
.

e:9

c:12

25

b:13

.
.

.

(b)

a:45d:16c:12 b:13

f:5

14

e:9

0 1

(a)

a:45d:16c:12 b:13f:5 e:9

(f)

100

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 1

0 10 1

0 1

(e)

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 10 1

0 1

(d)

a:4530

f:5

c:12

25

b:13 d:1614

e:9

0 10 1

0 1

(c)

a:45d:16

c:12

25

b:13

0 1

f:5

14

e:9

0 1

.45*1 + .41*3 + .14*4 = 2.24 bits per char
10

Huffman’s Algorithm (1952)

11

• Algorithm:

Insert each letter as a leaf into priority queue by freq

While queue length > 1

Remove smallest 2 nodes; call them x, y

Create a new node 𝑧 with 𝑥, 𝑦 as children and

freq(𝑧) = freq(𝑥) + freq(𝑦)

insert 𝑧 into queue

• Runtime: 𝑂(𝑛 log 𝑛)

• Goal: Minimize 𝑐𝑜𝑠𝑡 𝑇 = σ𝑐 freq 𝑐 ⋅ depth(𝑐)

T = Tree
c = alphabet

(leaves)

According to wiki, this is

Huffman’s class project.

Correctness Strategy

13

• Optimal solution may not be unique, so cannot prove

that greedy gives the only possible answer.

• Instead, show greedy’s solution is as good as any.

• How: an exchange argument
• Identify inversions: node-pairs whose swap improves tree

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more

frequent letter the shorter code.

before after

I.e., non-negative cost savings.

Defn: A pair of leaves x,y is an inversion if

depth(x) depth(y)

and

freq(x) freq(y)

𝑑 𝑥 𝑓 𝑥 + 𝑑 𝑦 𝑓 𝑦 − 𝑑 𝑥 𝑓 𝑦 + 𝑑 𝑦 𝑓 𝑥

= 𝑑 𝑥 − 𝑑 𝑦 𝑓 𝑥 − 𝑓 𝑦 ≥ 0

x

y

14

General Inversions

• Define the frequency of an internal node to be the

sum of the frequencies of the leaves in that

subtree.

• We can generalize

• the defn of inversion for any pair of disjoint nodes.

• the associated claim still holds:

• exchanging an inverted pair of nodes (&

associated subtrees) cannot raise the cost of a

tree.

• Proof: Same.

15

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9

Correctness Strategy

13

Lemma:

Any prefix code tree 𝑇 can be converted to

a huffman tree 𝐻 via inversion-exchanges

Corollary:

Huffman tree is optimal.

Proof:

Apply the above lemma to any optimal tree 𝑇 = 𝑇1.

The lemma only exchanges inversions, which never

increase cost.

So, 𝑐𝑜𝑠𝑡 𝑇1 ≥ 𝑐𝑜𝑠𝑡 𝑇2 ≥ 𝑐𝑜𝑠𝑡 𝑇4 ≥ ⋯ ≥ 𝑐𝑜𝑠𝑡(𝐻).

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9

c:12

25

14 41

e:9 d:16

55

100

a:45

f:5

b:13

(b)

a:45d:16c:12 b:13

f:5

14

e:9(a)

a:45d:16c:12 b:13f:5 e:9

(d)

a:4530

f:5

c:12

25

b:13 d:1614

e:9(c)

a:45d:16

c:12

25

b:13f:5

14

e:9

17

H:

T:

f:5

14

25 30

b:13 d:16

55

100

a:45

c:12

e:9

T’:

Induction: All nodes in the queue is a subtree of 𝑇 (after inversions).

Lemma: prefix 𝑇 → Huffman 𝐻 via inversion

13

Induction Hypothesis: At 𝑘𝑡ℎ iteration of Huffman,
all nodes in the queue is a subtree of 𝑇 (after inversions).

Base case: all nodes are leaves of 𝑇.

Inductive step: Huffman extracts 𝐴, 𝐵 from the 𝑄.

Case 1: 𝐴, 𝐵 is a siblings in 𝑇.
Their newly created parent node in 𝐻 corresponds to
their parent in 𝑇.
(used induction hypothesis here.)

Lemma: prefix 𝑇 → Huffman 𝐻 via inversion

13

Induction Hypothesis: At 𝑘𝑡ℎ iteration of Huffman,
all nodes in the queue is a subtree of 𝑇 (after inversions).
Case 2: 𝐴, 𝐵 is not a siblings in 𝑇.
WLOG, in T, 𝑑𝑒𝑝𝑡ℎ(𝐴) ≥ 𝑑𝑒𝑝𝑡ℎ(𝐵) & A is C’s sib.
Note B can’t overlap C because
• If 𝐵 = 𝐶, we have case 1.
• If 𝐵 is a subtree of 𝐶, 𝑑𝑒𝑝𝑡ℎ 𝐵 > 𝑑𝑒𝑝𝑡ℎ(𝐴).
• If 𝐶 is a subtree of 𝐵, 𝐴 and 𝐵 overlaps.
Now, note that
• 𝑑𝑒𝑝𝑡ℎ 𝐴 = 𝑑𝑒𝑝𝑡ℎ(𝐶) ≥ 𝑑𝑒𝑝𝑡ℎ(𝐵)
• 𝑓𝑟𝑒𝑞 𝐶 ≥ 𝑓𝑟𝑒𝑞(𝐵) because Huff picks the min 2.
So, 𝐵 − 𝐶 is an inversion.
Swapping gives 𝑇′ that

satisfies the induction.
T

A

B
C

T’

A
B

C

Quiz

This is the last lecture of greedy method.

So, I give some example with different favors.

YinTat wants to throw a zoom party where

• every person knows at least 4 people

• every person doesn’t know at least 4 people.

Given the undirected graph representing the friendship

status of his 𝑛 friends.

Question: Find an efficient algorithm that finds the largest

number of people he can invite subject to

those constraints.

6

• Huffman is optimal.

• BUT still might do better!

Huffman encodes fixed length blocks. What if we vary

them?

Huffman uses one encoding throughout a file. What if

characteristics change?

What if data has structure? E.g. raster images, video,…

Huffman is lossless. Necessary?

• GZIP, JPG, MPEG, …

Data Compression

20

Adaptive Huffman coding

13

Often, data comes from a stream.

Difficult to know the frequencies in the beginning.

There are multiple ways to update Huffman tree.

FGK (Faller-Gallager-Knuth)

• There is a special external node, called 0-node, is

used to identify a newly-coming character.

• Maintain the tree is sorted.

• When the freq is increased by 1, it can create inverted

pairs. In that case, we swap nodes, subtrees, or both.

• Dictionary and buffer “windows” are fixed length
and slide with the cursor

• Repeat:
Output (p, l, c) where

p = position of the longest match that starts in the dictionary
(relative to the cursor)
l = length of longest match
c = next char in buffer beyond longest match

Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary

(previously coded)
Lookahead

Buffer

Cursor

LZ77

Theory: it is optimal if the windows size tends to +∞ and

string is generated by Markov chain. [WZ94]

Only algorithm in the IEEE Milestones

a a c a a c a b c a b a a a c (_,0,a)

a a c a a c a b c a b a a a c (1,1,c)

a a c a a c a b c a b a a a c (3,4,b)

a a c a a c a b c a b a a a c (3,3,a)

a a c a a c a b c a b a a a c (1,2,c)

Dictionary (size = 6) Longest match

Next characterBuffer (size = 4)

LZ77: Example

gzip

1. Based on LZ77.

2. Adaptive Huffman code the positions, lengths and chars

3. ….

In general, compression is like prediction.

1. The entropy of English letter is 4.219 bits per letter

2. 3-letter model yields 2.77 bits per letter

3. Human experiments suggested 0.6 to 1.3 bits per letter.

For example, you can use neural network to predict and

compression 1 GB of wiki to 108MB.

(to compare, gzip 330MB, Huffman 500-600MB)

See http://www.mattmahoney.net/dc/text.html

How to do it even better?

http://www.mattmahoney.net/dc/text.html

Ultimate Answer?

Kolmogorov complexity 𝐾 𝑇 = min
Program 𝑃 outputs 𝑇

length(𝑃).

