CSE 421 Lecture 11

1 Master Theorem

Lemma 1. Let $S = 1 + x + x^2 + \cdots x^d$. Then, we have

$$S = \begin{cases} \Theta_x(1) & \text{if } x < 1, \\ d+1 & \text{if } x = 1, \\ \Theta_x(x^d) & \text{if } x > 1 \end{cases}$$

where Θ_x means the constant depends on x.

Proof. Let $S = 1 + x + x^2 + \dots + x^d$. Then, we have

$$xS = x + x^2 + \dots + x^{d+1}$$
$$xS - S = x^{d+1} - 1.$$

Hence, we have

$$S = \frac{x^{d+1} - 1}{x - 1}.$$

If x < 1, we have $S = \frac{1-x^{d+1}}{1-x}$. Note that $1 \le S \le \frac{1}{1-x}$ where both left and right are independent to d, we have $S = \Theta_x(1)$.

If x = 1, we have S = d + 1 by the definition of S. If x > 1, we have $x^d \le S \le \frac{x}{x-1} \cdot x^d$. Hence, we have $S = \Theta_x(x^d)$.

Theorem 2. Given $a \ge 1, b > 1, c > 0$ and $k \ge 0$. Suppose that $T(n) = aT(\frac{n}{b}) + cn^k$ for all $n \ge b$, then

- 1. If $a < b^k$, then $T(n) = \Theta(n^k)$. 2. If $a = b^k$, then $T(n) = \Theta(n^k \log n)$.
- 3. If $a > b^k$, then $T(n) = \Theta(n^{\log_b a})$.

Proof. As we argued in the slide, we have

$$T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k}\right)^i.$$

If $a < b^k$, the previous lemma shows

$$T(n) = cn^k \Theta(1) = \Theta(n^k).$$

If $a = b^k$, the previous lemma shows

$$T(n) = cn^k \Theta(\log_b n) = \Theta(n^k \log n)$$

If $a > b^k$, the previous lemma shows

$$T(n) = cn^k \Theta(\frac{a}{b^k})^{\log_b n}.$$

Note that $b^{\log_b n} = n$ and hence

$$T(n) = \Theta(n^k \frac{a^{\log_b n}}{n^k}) = \Theta(a^{\log_b n}) = \Theta((b^{\log_b n})^{\log_b n}) = \Theta((b^{\log_b n})^{\log_b n}) = \Theta(n^{\log_b n}).$$