
Problem

Given a sequence of numbers x1, x2, · · · , xn. Find the longest increasing subsequence in O(n2) time

Solution

De�nitions. Let Oj be the longest increasing subsequence ending at xj .
Let Pj be the second last number of some longest increasing subsequence ending at xj . (Set to −1 if Oj = 1)

Algorithm.

• For j = 1, 2, · · ·n
� Oj = 1. Pj = −1.
� For all i < j with xi < xj

∗ If Oi ≥ Oj ,
· Oj = max(Oj , 1 +Oi)
· Pj = i.

• Let k = argmaxk Ok

• Let path = {k}.
• While Pk 6= −1

� k ← Pk.
� path.push_front(k).

• Return path.

Runtime. For each j, the algorithm takes O(n) time and hence the total time is O(n2).

Correctness. Let xi1 , xi2 , · · · , xik , xj be the longest increasing sequence ending at j. Then, xi1 , xi2 , · · · , xik is the
longest increasing sequence ending at ik and that ik < j and xik < xj . Hence, we have

Oj = 1 +Oik ≤ 1 + max
i:xi<xj ,i<j

Oi.

On the other hand, Oj ≥ 1 + maxi:xi<xj ,i<j Oi because we can extend the longest subsequence ends at xi by
appending xj at the end. Hence, we have Oj = 1 + maxi:xi<xj ,i<j Oi, which matches with what the algorithm is
doing.

1


