## Problem

Given a sequence of numbers $x_{1}, x_{2}, \cdots, x_{n}$. Find the longest increasing subsequence in $O\left(n^{2}\right)$ time

## Solution

Definitions. Let $O_{j}$ be the longest increasing subsequence ending at $x_{j}$.
Let $P_{j}$ be the second last number of some longest increasing subsequence ending at $x_{j}$. (Set to -1 if $O_{j}=1$ )

## Algorithm.

- For $j=1,2, \cdots n$
$-O_{j}=1 . P_{j}=-1$.
- For all $i<j$ with $x_{i}<x_{j}$
* If $O_{i} \geq O_{j}$,
- $O_{j}=\max \left(O_{j}, 1+O_{i}\right)$
- $P_{j}=i$.
- Let $k=\arg \max _{k} O_{k}$
- Let path $=\{k\}$.
- While $P_{k} \neq-1$
$-k \leftarrow P_{k}$.
- path.push_front $(k)$.
- Return path.

Runtime. For each $j$, the algorithm takes $O(n)$ time and hence the total time is $O\left(n^{2}\right)$.
Correctness. Let $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}, x_{j}$ be the longest increasing sequence ending at $j$. Then, $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}$ is the longest increasing sequence ending at $i_{k}$ and that $i_{k}<j$ and $x_{i_{k}}<x_{j}$. Hence, we have

$$
O_{j}=1+O_{i_{k}} \leq 1+\max _{i: x_{i}<x_{j}, i<j} O_{i}
$$

On the other hand, $O_{j} \geq 1+\max _{i: x_{i}<x_{j}, i<j} O_{i}$ because we can extend the longest subsequence ends at $x_{i}$ by appending $x_{j}$ at the end. Hence, we have $O_{j}=1+\max _{i: x_{i}<x_{j}, i<j} O_{i}$, which matches with what the algorithm is doing.

