Problem

Given a sequence of numbers x_1, x_2, \dots, x_n . Find the longest increasing subsequence in $O(n^2)$ time

Solution

Definitions. Let O_j be the longest increasing subsequence ending at x_j . Let P_j be the second last number of some longest increasing subsequence ending at x_j . (Set to -1 if $O_j = 1$)

Algorithm.

• For
$$j = 1, 2, \dots n$$

 $- O_j = 1$. $P_j = -1$.
 $-$ For all $i < j$ with $x_i < x_j$
 $*$ If $O_i \ge O_j$,
 $\cdot O_j = \max(O_j, 1 + O_i)$
 $\cdot P_j = i$.
• Let $k = \arg \max_k O_k$
• Let path = $\{k\}$.
• While $P_k \ne -1$
 $- k \leftarrow P_k$.
 $- path.push_front(k)$.
• Return path.

Runtime. For each j, the algorithm takes O(n) time and hence the total time is $O(n^2)$.

Correctness. Let $x_{i_1}, x_{i_2}, \dots, x_{i_k}, x_j$ be the longest increasing sequence ending at j. Then, $x_{i_1}, x_{i_2}, \dots, x_{i_k}$ is the longest increasing sequence ending at i_k and that $i_k < j$ and $x_{i_k} < x_j$. Hence, we have

$$O_j = 1 + O_{i_k} \le 1 + \max_{i:x_i \le x_j, i \le j} O_i.$$

On the other hand, $O_j \ge 1 + \max_{i:x_i < x_j, i < j} O_i$ because we can extend the longest subsequence ends at x_i by appending x_j at the end. Hence, we have $O_j = 1 + \max_{i:x_i < x_j, i < j} O_i$, which matches with what the algorithm is doing.