EXERCISE 1

Algorithm.

- We define a new graph \widetilde{G} as follows:
 - Add vertices s^* (super source) and t (sink)
 - For each $v \in V$.
 - * Add vertices v_1, v_2, \cdots, v_T .
 - * Add edges (v_i, v_{i+1}) with capacity s(v) for all $i \in \{1, 2, \cdots, T-1\}$.
 - * Add edges (v_i, t) with capacity d(v, i) for all $i \in \{1, 2, \dots, T\}$.
 - For each $i \in \{1, 2, \cdots, T\}$,
 - * Add edges (s^*, s_i) with capacity C.
 - For each $(u, v) \in E$
 - * Add edges (u_i, v_i) for all $i \in \{1, 2, \dots, t\}$ with capacity c(u, v)
- Run maximum flow algorithm on G from s^* to t.
- Return true if the flow value is $\sum_{i=1}^{T} \sum_{v \in V} d(v, i)$.

Runtime. Since maximum flow problem can be solved in polynomial time, and the new graph has O(nT) vertices and O(mT) edges, our algorithm has runtime polynomial in n, m and T.

Correctness. Let K be the sum of the fulfilled demand. We claim that the maximum of K is exactly equals to the maximum flow value of the graph \tilde{G} from s^* to t. If the claim is true, the algorithm correctly outputs true if all demand can be satisfied.

Note that

- The flow on (s^*, s_i) denote the water produced on day *i*.
- The flow on (u_i, v_i) denote the flow on (u, v) on day *i*.
- The flow on (v_i, v_{i+1}) denote the amount of water stored on day *i*.
- The flow on (v_i, t) denote the fulfilled demand on v on day i.

Any $s^* - t$ flow on \tilde{G} corresponds to a water schedule on day 1 to day T. On the other hand, any water schedule on day 1 to day T can be represented by a $s^* - t$ flow on \tilde{G} . Furthermore, the fulfilled demand is exactly the sum of flow to t, which equals to the flow value. This proves the claim.

EXERCISE 2

Algorithm.

- Let f = 0
- While s, t is connected in G_f
 - Run Sally's algorithm on G_f to obtain δ_f . - Set $f \leftarrow f + \delta_f$.
- Return f.

Runtime. Let OPT(G) be the maximum s - t flow value in G. Let val(f) be the flow value of f. We first prove the following:

Lemma 1. We have $OPT(G) = OPT(G_f) + val(f)$.

Proof. For any s - t flow δ_f in G_f , $f + \delta_f$ is a s - t flow in G. Hence, $OPT(G) \ge val(f + \delta_f) = val(f) + val(\delta_f)$. In particular, this shows

$$OPT(G) \ge val(f) + OPT(G_f).$$

On the other hand, by maxflow mincut theorem, there is a s - t cut (A, B) on G_f with $\operatorname{cap}_{G_f}(A, B) = \operatorname{OPT}(G_f)$. Using the definition of cap, the definition of G_f and the flow value lemma

$$\operatorname{cap}_G(A, B) = \operatorname{cap}_{G_f}(A, B) + \operatorname{val}(f).$$

Hence, we have

$$OPT(G) \le cap_G(A, B)$$

= $cap_{G_f}(A, B) + val(f)$
= $OPT(G_f) + val(f)$.

Let $f^{(k)}$ be the flow at the beginning of the k-th step. By the guarantee of the Sally's algorithm, we have

$$\operatorname{val}(\delta_f^{(k)}) \ge \frac{1}{2} \operatorname{OPT}(G_{f^{(k)}}).$$

Using this and the previous lemma, we have

$$\begin{aligned} \operatorname{OPT}(G_{f^{(k+1)}}) &= \operatorname{OPT}(G_{f^{(k)}}) - \operatorname{val}(\delta_f^{(k)}) \\ &\leq \frac{1}{2} \operatorname{OPT}(G_{f^{(k)}}). \end{aligned}$$

Hence, the optimum value of the residual graph halves every step. Initially, $G_{f^{(1)}} = G$ with optimum value F. Hence, in $O(\log F)$ iterations, the optimal value is < 1. Since the Sally's algorithm outputs an integer flow, we have $OPT(G_{f^{(k)}})$ is integer for all k. Hence, in $O(\log F)$ iterations, $OPT(G_{f^{(k)}})$ becomes 0 and maxflow mincut theorem shows that s - t is disconnected in $G_{f^{(k)}}$.

Since Sally's algorithm takes O(m) time and since there are $O(\log F)$ iterations, the total runtime is $O(m \log F)$.

Correctness. Since δ_f is s - t flow on G_f , $f + \delta_f$ is s - t flow on G. Hence, the algorithm outputs a s - t flow. Since the algorithm only terminates when s - t is disconnected in $G_{f^{(k)}}$, maxflow mincut theorem shows that $OPT(G_f) = 0$. By the previous lemma, this shows the flow is a maxflow (val(f) = OPT(G)).