CSE 421 Lecture 2

January 5, 2022

$1 \operatorname{Big} O$ inequalities

Lemma 1. $a_{0}+a_{1} n+\cdots+a_{d} n^{d}=O\left(n^{d}\right)$.
Proof. For any positive integer n, we have

$$
\begin{aligned}
& a_{0}+a_{1} n+\cdots+a_{d} n^{d} \\
\leq & \left|a_{0}\right| n^{d}+\left|a_{1}\right| n^{d}+\cdots+\left|a_{d}\right| n^{d} \\
= & C n^{d}
\end{aligned}
$$

where $C=\sum_{i=0}^{d}\left|a_{i}\right|$.
Lemma 2. $\log _{a} n=O\left(\log _{b} n\right)$.
Proof. Note that $\log _{b} n=\frac{\log _{a} n}{\log _{a} b}$. Hence, we have $\log _{a} n \leq C \log _{b} n$ for $C=\log _{a} b$.
Lemma 3. $\log ^{k} n=O(n)$ for all $k \geq 0$. (Corollary: $n \log ^{3} n=O\left(n^{2}\right)$ and $\log ^{10} n=O(\sqrt{n})$)
Remark. We will not ask difficult math questions in HW/exam like this. You only need to understand the statement, but not the proof.

Proof. We claim that $x \leq 2^{x}$ for all $x \geq 0$. Using this, for any $n \geq 1$, we have

$$
\begin{aligned}
\log ^{k} n & =k^{k} \cdot\left(\frac{\log n}{k}\right)^{k} \\
& \leq k^{k} \cdot\left(e^{\frac{\log n}{k}}\right)^{k} \\
& =k^{k} \cdot e^{\log n} \\
& =k^{k} \cdot n
\end{aligned}
$$

To prove the claim, we define $f(x)=2^{x}-x$. For $0 \leq x \leq 1$, we have $f(x) \geq 2^{0}-1 \geq 0$. For $1 \leq x \leq 2$, we note that $f(x) \geq 2^{1}-2 \geq 0$. For $x \geq 2$, we have

$$
f^{\prime}(x)=2^{x} \log 2-1 \geq 2^{2} \log 2-1 \geq 0
$$

Hence, $f(x) \geq 0$ for all $0 \leq x \leq 2$ and f is increasing for $x \geq 2$. Thus, $f(x) \geq 0$ for all $x \geq 0$. Hence, $x \leq 2^{x}$.
Fact 4. $3^{n} \neq O\left(2^{n}\right)$
Example 5. $n \log ^{11} n \lesssim n 2^{\sqrt{\log n / \log \log n}} \lesssim n^{3 / 2} \lesssim n^{5 / 3} \lesssim n^{3} \lesssim n^{\sqrt{n} \log n}$.
Proof. To prove $n \log ^{11} n=O\left(n 2^{\sqrt{\log n / \log \log n}}\right)$, it suffices to show that

$$
\log ^{11} n=O\left(2^{\sqrt{\log n / \log \log n}}\right)
$$

Taking \log on both sides (and using log is increasing), it suffices to show that

$$
\log \log ^{11} n=O\left(\sqrt{\frac{\log n}{\log \log n}}\right)
$$

To see this, we note that

$$
\begin{aligned}
\log \log ^{11} n \sqrt{\log \log n} & =O\left(\log ^{3 / 2} \log n\right) \\
& =O(\sqrt{\log n})
\end{aligned}
$$

because $\log ^{3} \log n=O(\log n)($ Lemma 3 with $k=3$ and n replaced by $\log n)$.

2 Bounding m for General Graphs

Theorem 6. Every undirected graph with n vertices has at most $\frac{n(n-1)}{2}=O\left(n^{2}\right)$ edges.
Proof. Note that

- every edge connects two distinct vertices (no loops)
- no two edges connect to the same pair (no multiedges)

Hence, $m \leq\binom{ n}{2}=\frac{n(n-1)}{2}$.

3 Bounding m for Trees

Lemma 7. If G has no cycle, then it has a vertex of degree at most 1.
Proof. (Prove by contradiction.)
Suppose every vertex has degree at least 2.
Start from some vertex v_{1} and follow a path v_{1}, v_{2}, \cdots.
Say we are at v_{i}. Since degree ≥ 2, we can always find $v_{i+1} \neq v_{i-1}$.
Now keeping going until we see a repeated vertex $v_{j}=v_{i}$. (We must see a repeated vertex because there are finitely many vertices)

Note that $v_{i}, v_{i+1}, \cdots, v_{j}$ forms a cycle. This is a contradiction.

