
CSE 421 Lecture 3

1 Bounding m for Trees

Last lecture we proved that.

Lemma 1. If G has no cycle, then it has a vertex of degree at most 1.

Now, we �nish the result:

Theorem 2. Every tree with n vertices has exactly n− 1 edges.

Proof:

Let P (n) be the statement �Every tree with n vertices has exactly n− 1 edges�.
We prove by induction on n.

Base n = 1:
Any graph with 1 vertex has no edge.

Induction:

Let T be a tree with n vertices.
By Lemma 1, there is a vertex v ∈ T with degree 1 (Can't be degree 0 because T is connected).
Remove v to create a new graph T ′.
Note that
T ′ has no cycle (because T ′ ⊂ T and T has no cycle)
T ′ is connected (because we removed only degree 1 vertex).
Hence, T ′ is a tree with n− 1 vertices.
By induction, T ′ has n− 2 edges. Hence, T has n− 1 edges.

2 Bounding m for Planar Graphs

De�nition 3. A graph is planar if it can be drawn on the plane in such a way that its edges intersect only at their
endpoints. A face is a region bounded by edges, including the outer, in�nitely large region.

Lemma 4 (Euler's Formula). Given a connected planar graph with v vertices, e edges and f faces. We have

f + v = e+ 2.

Proof:

Let P (e) be the statement �f + v = e+ 2�.
We prove by induction on e.

Base e = 0:
The graph has 1 vertex and 1 face. Hence, 1 + 1 = 0 + 2.

Induction:

Case 1) G does not has a cycle.
G is a tree. We know f = 1 and e = v − 1. Hence, f + v = v + 1 = e+ 2.

Case 2) G has a cycle.

1



Pick an edge p on a cycle. Remove p to create a new graph G′.
Since the cycle separates the plane into two regions, the regions to either side of p must be distinct. When we

remove the edge p, we merge these two regions. So G′ has one fewer faces than G.
Let f ′, e′, v′ be the number of faces, edges and vertices in G′.
We have f ′ = f − 1, e′ = e− 1 and v′ = v.
Since f ′ + v′ = e′ + 2 (by induction), we have f + v = e+ 2.

Theorem 5. Given a planar graph with v vertices. Suppose that v ≥ 3, then it has at most e ≤ 3v − 6 edges.

Proof:

If the planar graph is not connected, we can prove it for each connected components and sum up the inequalities.
Hence, we can assume the planar graph is connected.

We de�ne the degree of a face to be the number of edges enclosing the face.
Since each edge touches two faces, we have ∑

faces f

deg(f) = 2e.

Since each face must have degree at least 3, we have 3f ≤ 2e.
By Euler's Formula, we have

f = e− v + 2.

Hence
2e ≥ 3f = 3e− 3v + 6.

This gives e ≤ 3v − 6.

3 BFS Tree

Lemma 6. All non-tree edges connects vertices on the same or adjacent levels of the tree.

Proof:

Consider an edge xy.
Assume x is �rst discovered at level i.
Then, we know L[y] ≥ i.
When we discover x, we set all undiscovered neighbors of x to level i+ 1.
Hence, L[y] ≤ i+ 1.

Theorem 7. (BFS Tree gives you the shortest path information). Level i in the tree are exactly all vertices with
dG(s, v) = i where s is the starting vertex and dG(s, v) is the shortest path distance from s to v on G.

Proof:

Fix any vertex v.

1) dG(s, v) ≤ L(v)
The BFS Tree gives a path of length L(v) from s to v.

2) dG(s, v) ≥ L(v)
Suppose the shortest path length is i. Say s = v0, v1, · · · , vi = v is the shortest path.
By previous Lemma, we know

L(v0) = L(s) = 0,

L(v1) ≤ L(v0) + 1

L(v2) ≤ L(v1) + 1

...

L(vi) ≤ L(vi−1) + 1.

2



Hence, L(v) = L(vi) ≤ i = dG(s, v).

4 Quiz: Finding Cycle

Problem 8. Give an algorithm to detect whether a given undirected graph contains a cycle.

Theorem 9. We can detect whether a given undirected graph contains a cycle in O(m+ n) time.

Proof:

Since we can test existence of cycle separately in each connected component, we assume the graph is connected.

Algorithm:

• Run BFS starting at any vertex.

• Let T be the BFS tree.

• If G = T ,

� Output no cycle.

• Else

� Let e = (v, w) be an edge in G but not in T .

� Let u be the least common ancestor of v and w in T .

� Output the cycle v → u→ w → v.

.
Runtime:

O(m+ n). The bottleneck is BFS.

Correctness:

Case 1) G = T .
Tree has no cycle

Case 2) G 6= T
Since T ⊂ G, there is an edge e ∈ G, but not in T . The algorithm uses e to construct a cycle.

3


