CSE 421 Lecture 5

1 Interval Scheduling

Theorem 1. For the interval scheduling problem, greedy methods (ordered by finish time) gives an optimal solution.

Proof:

Let i_1, i_2, i_3, \cdots be the k jobs picked by greedy method (order by finish time). Let j_1, j_2, j_3, \cdots be any valid solution with the m jobs (order by finish time). We show that " $k \ge r$ and $f(i_r) \le f(j_r)$ " by induction on $r \in \{1, 2, \cdots, m\}$. **Base base** r = 1: Greedy picks the job according to min finish time. So, $k \ge 1$ and $f(i_1) \le f(j_1)$. **Induction**: By hypothesis, $f(i_{r-1}) \le f(j_{r-1})$. Since j_{r-1}, j_r does not overlap, $f(j_{r-1}) \le s(j_r)$. So, job j_r is one of the candidate greedy method looks at. Since greedy picks the job finishes earliest among the candidates, $k \ge j$ and $f(i_r) \le f(j_r)$.

2 Interval Partitioning

Theorem 2. For the interval partitioning problem, greedy methods (ordered by start time) gives an optimal solution.

Proof:

Let d is the number of classroom greedy method uses.

Classroom d is opened because some lecture j is not compatible with another d-1 lectures. Look at that time, there are d lectures at the same time.

So, the depth is $\geq d$.

So, any solution requires at least d classrooms.