CSE 421 Lecture 5

1 Interval Scheduling

Theorem 1. For the interval scheduling problem, greedy methods (ordered by finish time) gives an optimal solution.

Proof:

Let $i_{1}, i_{2}, i_{3}, \cdots$ be the k jobs picked by greedy method (order by finish time).
Let $j_{1}, j_{2}, j_{3}, \cdots$ be any valid solution with the m jobs (order by finish time).
We show that " $k \geq r$ and $f\left(i_{r}\right) \leq f\left(j_{r}\right)$ " by induction on $r \in\{1,2, \cdots, m\}$.
Base base $r=1$:
Greedy picks the job according to min finish time. So, $k \geq 1$ and $f\left(i_{1}\right) \leq f\left(j_{1}\right)$.
Induction:
By hypothesis, $f\left(i_{r-1}\right) \leq f\left(j_{r-1}\right)$.
Since j_{r-1}, j_{r} does not overlap, $f\left(j_{r-1}\right) \leq s\left(j_{r}\right)$.
So, job j_{r} is one of the candidate greedy method looks at.
Since greedy picks the job finishes earliest among the candidates, $k \geq j$ and $f\left(i_{r}\right) \leq f\left(j_{r}\right)$.

2 Interval Partitioning

Theorem 2. For the interval partitioning problem, greedy methods (ordered by start time) gives an optimal solution.

Proof:

Let d is the number of classroom greedy method uses.
Classroom d is opened because some lecture j is not compatible with another $d-1$ lectures. Look at that time, there are d lectures at the same time.

So, the depth is $\geq d$.
So, any solution requires at least d classrooms.

