CSE 421 Lecture 7

1 Dijkstra's Algorithm

Theorem 1. Let T be the spanning tree found by $\operatorname{Dijkstra}(s)$. Then, $d_{G}(s, u)=d_{T}(s, u)$ for all u.

Proof:

Let S_{k} be the set S in the algorithm before step k.
Let induction statement $P(k)$ be " $d_{T}(s, u)=d_{G}(s, u)$ for all $u \in S_{k}$ "
Base case $k=1$:
$S_{1}=\{s\} . d_{T}(s, s)=0=d_{G}(s, s)$.
Induction step:
Let v be the new vertex in S_{k}.
Let P be the path from s to v using the tree and the addition edge.
// The idea: Consider a shortest path P^{*} from s to v. By the choice of the algorithm, P is the shortest path exiting the set S_{k-1}. So, $c\left(P^{*}\right) \geq c(P)$.

Let P^{*} be some shortest path from s to v.
Let (u, v) be the edge that P exit S_{k-1}
Let (x, y) be the first edge that P^{*} exit S_{k-1}
Note that

$$
\begin{aligned}
c\left(P^{*}\right) & \geq d_{G}(s, x)+c_{(x, y)}\left(\text { it is a subpath of } P^{*}\right) \\
& =d_{T}(s, x)+c_{(x, y)}\left(x \in S_{k-1}\right) \\
& \geq d_{T}(s, u)+c_{(u, v)}(\text { by the choice of algo }) \\
& =c(P)
\end{aligned}
$$

2 Quiz

Algorithm:

Run dijkstra to find a shortest path from s to t with the new length

$$
\tilde{l}_{e}=l_{e}+\frac{1}{n}
$$

Output the shortest path dijkstra gives.

Runtime:

$O(m+n \log n)$ due to dijkstra.

Correctness:

Claim: Any shortest path for the distance \tilde{l} is a shortest path for the distance l.
Proof: Any shortest path has length at most $n-1$. So, we at most add $\frac{n-1}{n}<1$. Since all the costs are integer, any shortest path for the distance \tilde{l} is a shortest path for the distance l.

Now, note that any shortest path in l with less length is shorter in \tilde{l}. So, the algo correctly outputs a shortest path with minimum length.

