CSE 421 Lecture 7

1 Dijkstra's Algorithm

Theorem 1. Let T be the spanning tree found by Dijkstra(s). Then, $d_G(s, u) = d_T(s, u)$ for all u.

Proof:

Let S_k be the set S in the algorithm before step k. Let induction statement P(k) be " $d_T(s, u) = d_G(s, u)$ for all $u \in S_k$ " **Base case** k = 1: $S_1 = \{s\}$. $d_T(s, s) = 0 = d_G(s, s)$. **Induction step:** Let v be the new vertex in S_k . Let P be the path from s to v using the tree and the addition edge.

// The idea: Consider a shortest path P^* from s to v. By the choice of the algorithm, P is the shortest path exiting the set S_{k-1} . So, $c(P^*) \ge c(P)$.

Let P^* be some shortest path from s to v.

Let (u, v) be the edge that P exit S_{k-1} Let (x, y) be the first edge that P^* exit S_{k-1} Note that

$$c(P^*) \ge d_G(s, x) + c_{(x,y)} \text{ (it is a subpath of } P^*)$$

= $d_T(s, x) + c_{(x,y)} (x \in S_{k-1})$
 $\ge d_T(s, u) + c_{(u,v)} \text{ (by the choice of algo)}$
= $c(P)$.

2 Quiz

Algorithm:

Run dijkstra to find a shortest path from s to t with the new length

$$\tilde{l}_e = l_e + \frac{1}{n}.$$

Output the shortest path dijkstra gives. **Runtime:**

 $O(m + n \log n)$ due to dijkstra.

Correctness:

Claim: Any shortest path for the distance \tilde{l} is a shortest path for the distance l.

Proof: Any shortest path has length at most n-1. So, we at most add $\frac{n-1}{n} < 1$. Since all the costs are integer, any shortest path for the distance \tilde{l} is a shortest path for the distance l.

Now, note that any shortest path in l with less length is shorter in \tilde{l} . So, the algo correctly outputs a shortest path with minimum length.