CSE 421 Lecture 9

1 Prefix code

Theorem 1. Given k symbols. There is a prefix code with length l_i for symbol i if and only if

$$\sum_{i=1}^{k} 2^{-l_i} = 1.$$

We split the proof into two parts: showing the condition $\sum_{i=1}^{k} 2^{-l_i}$ is sufficient and necessary separately.

Lemma 2. $\sum_{i=1}^{k} 2^{-l_i}$ condition is sufficient.

Proof: Algorithm:

- Insert each symbol as a leaf into priority queue Q by length.
- While Q.size() > 1
 - Remove 2 trees with largest lengths, call them x, y
 - Create a new tree z with x, y as its children with

$$l_z = l_x - 1.$$

- Insert z into Q

• **Return** the only tree in Q

Runtime:

 $O(k \log k)$. (k iterations, each iteration priority queue takes $O(\log k)$ time)

Proof: (by induction)

Let P(k) be the statement "For k symbols, the algorithm outputs a prefix tree with required length if $\sum_{i=1}^{k} 2^{-l_i} = 1$."

Base k = 1. By the condition, we have $2^{-l_1} = 1$ and hence $l_1 = 0$. On the other hand, the algorithm indeed outputs a tree with only 1 vertex with length 0.

Induction: Suppose $l_1 \ge l_2 \ge \cdots \ge l_k \ge l_{k+1}$. Since $\sum_{i=1}^{k+1} 2^{-l_i} = 1$ and l_i are integers, we have that $l_k = l_{k+1}$. Due to the priority queue, in the first step, the largest elements we pick are l_k and l_{k+1} . After merging element k and k+1 into one new element, z with $l_z = l_k - 1$, we have that

$$1 = \sum_{i=1}^{k-1} 2^{-l_i} + 2^{-l_k} + 2^{-l_{k+1}} = \sum_{i=1}^{k-1} 2^{-l_i} + 2^{-l_z}.$$

Since $(l_1, l_2, \dots, l_{k-1}, l_z)$ satisfies the condition, induction hypothesis shows that the rest of the algorithm will output a prefix tree with these length. Since z is a tree with children k and k + 1, the length for k and k + 1 are also correct.

Lemma 3. $\sum_{i=1}^{k} 2^{-l_i}$ condition is necessary.

Proof:

Again, it can be proved by induction. In the induction step, we simply remove two leafs with largest length. The detailed proof is omitted here.

2 Correctness of Huffman's Algorithm

Lemma 4. There is a prefix code T with minimum cost(T) such that the 2 least frequent letters are siblings

Proof:

Consider any prefix code T with minimum cost(T)

Let x and y be that two letters. Let d(x) and f(x) be the depth and frequency of x.

Without loss of generality, $d(x) \ge d(y)$. (the proof for d(x) < d(y) is the same).

Let x' be the sibling of x. Let f(x') be the frequency of x' (or its leaves).

Since x, y be two letters with least frequency. We have $f(y) \leq f(x')$.

When we swap y and x',

> the length of letter y increased by d(x) - d(y).

> the length of letter x' (or its leaves) decreased by d(x) - d(y).

Hence, the total cost is changed by

$$f(y)(d(x) - d(y)) - f(x')(d(x) - d(y)) \le 0.$$

Hence, the new tree is still has minimum cost and x, y are siblings.

Theorem 5. Huffman's algorithm produces a prefix code T with minimum cost(T).

Proof: (by induction)

Let P(k) be the statement "For k symbols, Huffman's algorithm produces a optimal prefix code." **Base** k = 2: There only one prefix code. So, the output is optimal **Induction**:

Let T be the output of Huffman.

Previous Lemma shows that there is a prefix code T^* such that s_k, s_{k+1} are sibling and

$$\operatorname{cost}(T^*) = \operatorname{OPT}.$$

Let $s_1, s_2, \cdots, s_{k+1}$ be the symbols with its frequency $f_1 \ge f_2 \ge \cdots \ge f_{k+1}$. Note that

$$T_{-} := T - \{s_k, s_{k+1}\}$$

is the output of Huffman with the symbols $s_1, s_2, \dots, s_{k-1}, z$ where z is a new symbol with frequency $f_k + f_{k+1}$. By viewing $T^*_- = T^* - \{s_k, s_{k+1}\}$ as a prefix code for symbols $s_1, s_2, \dots, s_{k-1}, z$, we have

 $\cot(T_{-}) \le \cot(T_{-}^*).$

Since the symbol s_k, s_{k+1} has length 1 unit longer than z, we have

$$cost(T) = cost(T_{-}) + f_k + f_{k+1},$$

$$cost(T^*) = cost(T_{-}^*) + f_k + f_{k+1}.$$

Thus, we have

$$\cot(T) \le \cot(T^*).$$

This proves T is optimal.

3 Party

Algorithm:

- Let S be the set of candidates for the party.
- Initialize $S = \{\text{everyone}\}.$
- Do

- (a) $S = \{i \in S : i \text{ knows at least 4 people in } S\}$

- (b) $S = \{i \in S : i \text{ does not know at least 4 people in } S\}$

- while (if S changed)
- Return S

Runtime:

O(m+n). We maintain

- the degree of each people in S.
- the list of people we are going to eliminate.

The cost of removing one people in S while maintaining the above is exactly degree of that people.

Correctness:

Let S^* be the set of people that can participate in any valid party.

By induction, one can show that each step of the algorithm, we have $S^* \subset S$.

To see this, look at step (a) and (b).

For step (a), if i knows less than 4 people in S, then i knows less than 4 people in S^* and hence i cannot be in any valid party. Hence, removing i in step (a) is fine.

For step (b), if *i* "does not know" less than 4 people in *S*, then *i* "does not know" less than 4 people in S^* and hence *i* cannot be in any valid party. Hence, removing *i* in step (b) is fine.

Next, we note that the output party is valid by the construction. Since $|S| \ge |S^*| \ge OPT$, S is the biggest party.