CSE 421 Lecture 9

1 Prefix code

Theorem 1. Given k symbols. There is a prefix code with length l_{i} for symbol i if and only if

$$
\sum_{i=1}^{k} 2^{-l_{i}}=1
$$

We split the proof into two parts: showing the condition $\sum_{i=1}^{k} 2^{-l_{i}}$ is sufficient and necessary separately.
Lemma 2. $\sum_{i=1}^{k} 2^{-l_{i}}$ condition is sufficient.
Proof:
Algorithm:

- Insert each symbol as a leaf into priority queue Q by length.
- While Q.size ()>1
- Remove 2 trees with largest lengths, call them x, y
- Create a new tree z with x, y as its children with

$$
l_{z}=l_{x}-1
$$

- Insert z into Q
- Return the only tree in Q

Runtime:

$O(k \log k)$. (k iterations, each iteration priority queue takes $O(\log k)$ time $)$

Proof: (by induction)

Let $P(k)$ be the statement "For k symbols, the algorithm outputs a prefix tree with required length if $\sum_{i=1}^{k} 2^{-l_{i}}=$ 1."

Base $k=1$. By the condition, we have $2^{-l_{1}}=1$ and hence $l_{1}=0$. On the other hand, the algorithm indeed outputs a tree with only 1 vertex with length 0 .

Induction: Suppose $l_{1} \geq l_{2} \geq \cdots \geq l_{k} \geq l_{k+1}$. Since $\sum_{i=1}^{k+1} 2^{-l_{i}}=1$ and l_{i} are integers, we have that $l_{k}=l_{k+1}$.
Due to the priority queue, in the first step, the largest elements we pick are l_{k} and l_{k+1}. After merging element k and $k+1$ into one new element, z with $l_{z}=l_{k}-1$, we have that

$$
1=\sum_{i=1}^{k-1} 2^{-l_{i}}+2^{-l_{k}}+2^{-l_{k+1}}=\sum_{i=1}^{k-1} 2^{-l_{i}}+2^{-l_{z}}
$$

Since $\left(l_{1}, l_{2}, \cdots, l_{k-1}, l_{z}\right)$ satisfies the condition, induction hypothesis shows that the rest of the algorithm will output a prefix tree with these length. Since z is a tree with children k and $k+1$, the length for k and $k+1$ are also correct.
Lemma 3. $\sum_{i=1}^{k} 2^{-l_{i}}$ condition is necessary.
Proof:
Again, it can be proved by induction. In the induction step, we simply remove two leafs with largest length. The detailed proof is omitted here.

2 Correctness of Huffman's Algorithm

Lemma 4. There is a prefix code T with minimum $\operatorname{cost}(T)$ such that the 2 least frequent letters are siblings

Proof:

Consider any prefix code T with minimum $\operatorname{cost}(T)$
Let x and y be that two letters. Let $d(x)$ and $f(x)$ be the depth and frequency of x.
Without loss of generality, $d(x) \geq d(y)$. (the proof for $d(x)<d(y)$ is the same).
Let x^{\prime} be the sibling of x. Let $f\left(x^{\prime}\right)$ be the frequency of x^{\prime} (or its leaves).
Since x, y be two letters with least frequency. We have $f(y) \leq f\left(x^{\prime}\right)$.
When we swap y and x^{\prime},
$>$ the length of letter y increased by $d(x)-d(y)$.
$>$ the length of letter x^{\prime} (or its leaves) decreased by $d(x)-d(y)$.
Hence, the total cost is changed by

$$
f(y)(d(x)-d(y))-f\left(x^{\prime}\right)(d(x)-d(y)) \leq 0 .
$$

Hence, the new tree is still has minimum cost and x, y are siblings.
Theorem 5. Huffman's algorithm produces a prefix code T with minimum $\operatorname{cost}(T)$.
Proof: (by induction)
Let $P(k)$ be the statement "For k symbols, Huffman's algorithm produces a optimal prefix code."
Base $k=2$: There only one prefix code. So, the output is optimal
Induction:
Let T be the output of Huffman.
Previous Lemma shows that there is a prefix code T^{*} such that s_{k}, s_{k+1} are sibling and

$$
\operatorname{cost}\left(T^{*}\right)=\mathrm{OPT}
$$

Let $s_{1}, s_{2}, \cdots, s_{k+1}$ be the symbols with its frequency $f_{1} \geq f_{2} \geq \cdots \geq f_{k+1}$.
Note that

$$
T_{-}:=T-\left\{s_{k}, s_{k+1}\right\}
$$

is the output of Huffman with the symbols $s_{1}, s_{2}, \cdots, s_{k-1}, z$ where z is a new symbol with frequency $f_{k}+f_{k+1}$.
By viewing $T_{-}^{*}=T^{*}-\left\{s_{k}, s_{k+1}\right\}$ as a prefix code for symbols $s_{1}, s_{2}, \cdots, s_{k-1}$, z, we have

$$
\operatorname{cost}\left(T_{-}\right) \leq \operatorname{cost}\left(T_{-}^{*}\right)
$$

Since the symbol s_{k}, s_{k+1} has length 1 unit longer than z, we have

$$
\begin{aligned}
\operatorname{cost}(T) & =\operatorname{cost}\left(T_{-}\right)+f_{k}+f_{k+1} \\
\operatorname{cost}\left(T^{*}\right) & =\operatorname{cost}\left(T_{-}^{*}\right)+f_{k}+f_{k+1}
\end{aligned}
$$

Thus, we have

$$
\operatorname{cost}(T) \leq \operatorname{cost}\left(T^{*}\right)
$$

This proves T is optimal.

3 Party

Algorithm:

- Let S be the set of candidates for the party.
- Initialize $S=\{$ everyone $\}$.
- Do
- (a) $S=\{i \in S: i$ knows at least 4 people in $S\}$
-(b) $S=\{i \in S: i$ does not know at least 4 people in $S\}$
- while (if S changed)
- Return S

Runtime:

$O(m+n)$. We maintain

- the degree of each people in S.
- the list of people we are going to eliminate.

The cost of removing one people in S while maintaining the above is exactly degree of that people.

Correctness:

Let S^{*} be the set of people that can participate in any valid party.
By induction, one can show that each step of the algorithm, we have $S^{*} \subset S$.
To see this, look at step (a) and (b).
For step (a), if i knows less than 4 people in S, then i knows less than 4 people in S^{*} and hence i cannot be in any valid party. Hence, removing i in step (a) is fine.

For step (b), if i "does not know" less than 4 people in S, then i "does not know" less than 4 people in S^{*} and hence i cannot be in any valid party. Hence, removing i in step (b) is fine.

Next, we note that the output party is valid by the construction. Since $|S| \geq\left|S^{*}\right| \geq O P T, S$ is the biggest party.

