
CSE 421 Lecture 9

1 Pre�x code

Theorem 1. Given k symbols. There is a pre�x code with length li for symbol i if and only if

k∑
i=1

2−li = 1.

We split the proof into two parts: showing the condition
∑k

i=1 2
−li is su�cient and necessary separately.

Lemma 2.
∑k

i=1 2
−li condition is su�cient.

Proof:
Algorithm:

• Insert each symbol as a leaf into priority queue Q by length.

• While Q.size() > 1

� Remove 2 trees with largest lengths, call them x, y

� Create a new tree z with x, y as its children with

lz = lx − 1.

� Insert z into Q

• Return the only tree in Q

.
Runtime:
O(k log k). (k iterations, each iteration priority queue takes O(log k) time)
.
Proof: (by induction)

Let P (k) be the statement �For k symbols, the algorithm outputs a pre�x tree with required length if
∑k

i=1 2
−li =

1.�
Base k = 1. By the condition, we have 2−l1 = 1 and hence l1 = 0. On the other hand, the algorithm indeed

outputs a tree with only 1 vertex with length 0.
Induction: Suppose l1 ≥ l2 ≥ · · · ≥ lk ≥ lk+1. Since

∑k+1
i=1 2−li = 1 and li are integers, we have that lk = lk+1.

Due to the priority queue, in the �rst step, the largest elements we pick are lk and lk+1. After merging element
k and k + 1 into one new element, z with lz = lk − 1, we have that

1 =

k−1∑
i=1

2−li + 2−lk + 2−lk+1 =

k−1∑
i=1

2−li + 2−lz .

Since (l1, l2, · · · , lk−1, lz) satis�es the condition, induction hypothesis shows that the rest of the algorithm will
output a pre�x tree with these length. Since z is a tree with children k and k + 1, the length for k and k + 1 are
also correct.

Lemma 3.
∑k

i=1 2
−li condition is necessary.

Proof:
Again, it can be proved by induction. In the induction step, we simply remove two leafs with largest length.

The detailed proof is omitted here.

1

2 Correctness of Hu�man's Algorithm

Lemma 4. There is a pre�x code T with minimum cost(T) such that the 2 least frequent letters are siblings

Proof:
Consider any pre�x code T with minimum cost(T)
Let x and y be that two letters. Let d(x) and f(x) be the depth and frequency of x.
Without loss of generality, d(x) ≥ d(y). (the proof for d(x) < d(y) is the same).
Let x′ be the sibling of x. Let f(x′) be the frequency of x′ (or its leaves).
Since x, y be two letters with least frequency. We have f(y) ≤ f(x′).
When we swap y and x′,
> the length of letter y increased by d(x)− d(y).
> the length of letter x′ (or its leaves) decreased by d(x)− d(y).
Hence, the total cost is changed by

f(y)(d(x)− d(y))− f(x′)(d(x)− d(y)) ≤ 0.

Hence, the new tree is still has minimum cost and x, y are siblings.

Theorem 5. Hu�man's algorithm produces a pre�x code T with minimum cost(T).

Proof: (by induction)
Let P (k) be the statement �For k symbols, Hu�man's algorithm produces a optimal pre�x code.�
Base k = 2: There only one pre�x code. So, the output is optimal
Induction:
Let T be the output of Hu�man.
Previous Lemma shows that there is a pre�x code T ∗ such that sk, sk+1 are sibling and

cost(T ∗) = OPT.

Let s1, s2, · · · , sk+1 be the symbols with its frequency f1 ≥ f2 ≥ · · · ≥ fk+1.
Note that

T− := T − {sk, sk+1}

is the output of Hu�man with the symbols s1, s2, · · · , sk−1, z where z is a new symbol with frequency fk + fk+1.
By viewing T ∗− = T ∗ − {sk, sk+1} as a pre�x code for symbols s1, s2, · · · , sk−1, z, we have

cost(T−) ≤ cost(T ∗−).

Since the symbol sk, sk+1 has length 1 unit longer than z, we have

cost(T) = cost(T−) + fk + fk+1,

cost(T ∗) = cost(T ∗−) + fk + fk+1.

Thus, we have
cost(T) ≤ cost(T ∗).

This proves T is optimal.

3 Party

.
Algorithm:

• Let S be the set of candidates for the party.

• Initialize S = {everyone}.

• Do

� (a) S = {i ∈ S : i knows at least 4 people in S}

2

� (b) S = {i ∈ S : i does not know at least 4 people in S}

• while (if S changed)

• Return S

.
Runtime:
O(m+ n). We maintain

• the degree of each people in S.

• the list of people we are going to eliminate.

.
The cost of removing one people in S while maintaining the above is exactly degree of that people.
.
Correctness:
Let S∗ be the set of people that can participate in any valid party.
By induction, one can show that each step of the algorithm, we have S∗ ⊂ S.
To see this, look at step (a) and (b).
For step (a), if i knows less than 4 people in S, then i knows less than 4 people in S∗ and hence i cannot be in

any valid party. Hence, removing i in step (a) is �ne.
For step (b), if i �does not know� less than 4 people in S, then i �does not know� less than 4 people in S∗ and

hence i cannot be in any valid party. Hence, removing i in step (b) is �ne.
Next, we note that the output party is valid by the construction. Since |S| ≥ |S∗| ≥ OPT , S is the biggest

party.

3

