CSE 421
Introduction to Algorithms

Lecture 4: BFS, DFS Properties/Applications,
Topological Sort
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Undirected Graph Search Application: Connected Components

r/\

Want to answer questions of the form: —]?ak [

|
Given: verticesu and vin G VCUT(\FW/\/ 7 / w

Is there a path from u to v?

DG Pe
Idea: create array A s.t
A|u| = smallest numbered vertex co tou ?}

Answer is yes iff A[u] = A[v] Q: Why is this better than
[/CM/ an array Path[u, v]?

SUSy,
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Undirected Graph Search Application: Connected Components

Initial state: all v unvisited ]D/m
fors<1tondo B R
if state(s) = fully-explored then x c, . }V /J
(BFS(S) setting A|u] <—s for each u found
(and marking u V|5|ted/fully explore N /Vl M|
endfor S2n

Total cost: O(n + m)

* Each vertex is touched once in outer procedure and edges examined in
different BFS runs are disjoint

* Works also with Depth First Search ...
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DFS(u) — Recursive Procedure

Global Initialization: mark all vertices "unvisited"
DFS(u)

/
mark u V|5|ted” and add uto R

for each edge (uC)/

if (v is_“unvisi d”
(DF Y@? M [\15 S~
end for
mark u “fully-explored”
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Properties of DFS(s)

Like BFS(s):
* DFS(s) visits x iff there is a path in G from s to x
* Edges into undiscovered vertices define depth-first spanning tree of G

— "
Unlike the BFS tree:

* the DFS spanning tree isn't minimum depth
e its levels don't reflect min distance from the root
* non-tree edges never join vertices on the same or adjacent levels

BUT...
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Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

* In other words ... No “cross edges”.
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No cross edges in DFS on undirected graphs >\/
d

Claim: During DFS(x) every vertex marked “visited” is a descendantof x [ \ °

inthe DFS tree T

Claim: For every x, y inthe DFS tree T, if (x,y) is an edge not i

then one of x or y is an ancestor of the otherin T
K

Proof: %é7
* One of DFS(x) or DFS(y) is called first, suppose WLOG that DFS(x) was
called before DFS(y) 2N
* During DFS(x), the edge (x,y) is examined

* Since (x,y) is a not an edge of T, y was already visited when edge (x, y) was
examined duringﬁ(x) =

* Therefore y was visited during the call to DFS(x) so y is a descendant of x. m
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Applications of Graph Traversal: Bipartiteness Testing

Definition: An undirected graph G is bipartite iff we can color its
vertices red and green so each edge has different color endpoints

Input: Undirected graph G
Goal: If G is bipartite, output a coloring;
otherwise, output “NOT Bipartite”.

Fact: Graph G contains an odd-length cycle = it is not bipartite

Just coloring the cycle part On a cycle the two colors must alternate, so

of G is impossible * green every 2" vertex
* red every 2" vertex

Can’t have either if length is not divisible by 2.
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Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that G is connected
* Otherwise run on each component

Simple idea: start coloring nodes starting at a given node s
 Color s red
* Color all neighbors of s green
 Color all their neighbors red, etc.
* If you ever hit a node that was already colored
* the same color as you want to color it, ignore it
* the opposite color, output “NOT Bipartite” and halt

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




BFS gives Bipartiteness m

Run BFS assigning all vertices from layer L, the color i mod 2 ©
* i.e., red if they are in an even layer, green if in an odd layer

* if no edge joining two vertices of the same color
* then it is a good coloring

e otherwise
 there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?
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Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers
= Any bad edge must join two vertices u and v in the same layer

Say the layer withuand vis L;
u and v have common ancestor at some level L; fori < j

Odd cycle of length 2(j — i) + 1
= Not Bipartite
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DFS(v) for a directed graph




DFS(v)

/ Xeeedges

forward r

edges
back edges @

o & O
@ pag < cross edges

N\ @1_ ...... NO — cross edges
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Properties of Directed DFS

* Before DFS(s) returns, it visits all previously unvisited vertices
reachable via directed paths from s

Juref=?

* Every cycle contains a back edge in the DFS tree
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Strongly Connected Components of Directed Graphs

Defn: Vertices u and v are strongly connected iff they are on a directed cycle (there are

paths from u to v and from v to u).
A~ v
et

Defn: Can partition vertices of any directed graph into strongly connected components:

1. all pairs of vertices in the same component are strongly connected
2. can’t merge components and keep property 1

» Strongly connected components can be stored efficiently just like connected components

* Can be found by extending DFS algorithm in O(n + m) time using extra bookkeeping
* We won’t cover the details
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Strongly Connected Components

< cross edges
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Strongly Connected Components
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Strongly Connected Components
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Directed Acyclic Graphs

A directed graph G = (V, E) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to
single vertices, the result is a DAG
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Topological Sort

Given: a directed acyclic graph (DAG) G = (V,E)

Output: numbering of the vertices of G with distinct numbers from 1 ton
so that edges only go from lower numbered to higher numbered vertices

Applications:
* nodes represent tasks
* edges represent precedence between tasks
 topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

* Process strongly connected components one-by-one in the order given by
topological sort of the DAG you get from shrinking them.
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Directed Acyclic Graph
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In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction
Suppose every vertex has some incoming edge
Consider following procedure:
while (true) do
V < some predecessor of v

* After n + 1 steps where n = |V| there will be a repeated vertex
* This yields a cycle, contradicting that it is a DAG. =
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Topological Sort

e Can do using DFS

* Alternative simpler idea:
* Any vertex of in-degree 0 can be given number 1 to start
 Remove it from the graph
* Then give a vertex of in-degree O number 2
* Etc.
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Topological Sort
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Topological Sort




Topological Sort




Topological Sort
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Topological Sort
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Implementing Topological Sort

* Go through all edges, computing array with in-degree for each vertex
O(m+n)

* Maintain a list of vertices of in-degree 0
s

* Remove any vertex in list and number it
CT—

 When a vertex is removed, decrease in-degree of each neighbor by 1
and add them to the list if their degree drops to 0

Total cost: O(m + n)
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