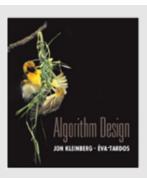
Lecture02

CSE 421 Introduction to Algorithms

Richard Anderson Winter 2024 Lecture 2

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Friday, February 9, 2024
 - Final, Monday, March 11, 2:30-4:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Homework, Section Materials
- Office Hours have been posted



Stable Matching: Formal Problem

Input

- Preference lists for m₁, m₂, ..., m_n
- Preference lists for w₁, w₂, ..., w_n

Output

 Perfect matching M satisfying stability property (e.g., no instabilities):

```
For all m', m'', w', w''

If (m', w') \in M and (m'', w'') \in M then

(m') prefers w' to w'') or (w'') prefers m'' to m')
```

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m₂, w accepts m, dumping m₂

If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Example

m₁: w₁ w₂ w₃

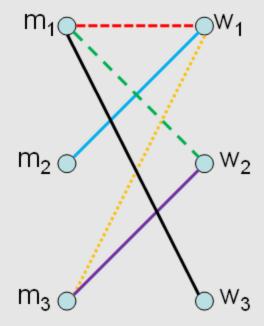
m₂: w₁ w₃ w₂

m₃: W₁ W₂ W₃

w₁: m₂ m₃ m₁

w₂: m₃ m₁ m₂

w₃: m₃ m₁ m₂



Order: \mathbf{m}_1 , \mathbf{m}_2 , \mathbf{m}_3 , \mathbf{m}_1 , \mathbf{m}_3 , \mathbf{m}_1

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

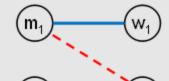
When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

אס אייראשוע שעזאי (איי, שע) The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m_1 prefers w_2 to w_1



How could this happen?

W S populard M

M2 frefux M2 to M1

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

 m_1 : w_1 w_2 w_3

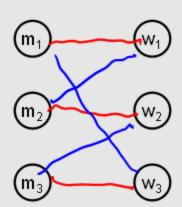
 \mathbf{m}_2 : \mathbf{w}_2 \mathbf{w}_3 \mathbf{w}_1

 m_3 : w_3 w_1 w_2

 w_1 : m_2 m_3 m_1

 w_2 : m_3 m_1 m_2

 \mathbf{w}_3 : \mathbf{m}_1 \mathbf{m}_2 \mathbf{m}_3



13

How many stable matchings can you find?

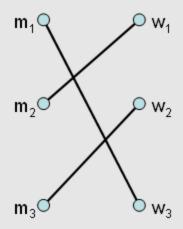
Algorithm under specified

- Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

m₁: w₁ w₂ w₃ m₂: w₁ w₃ w₂ m₃: w₁ w₂ w₃ w₁: m₂ m₃ m₁ w₂: m₃ m₁ m₂ w₃: m₃ m₁ m₂



What is the M-rank?

3+1+2=6What is the W-rank? 1+2=4 15

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

```
m<sub>1</sub>: w<sub>8</sub> w<sub>3</sub> w<sub>1</sub> w<sub>5</sub> w<sub>9</sub> w<sub>2</sub> w<sub>4</sub> w<sub>6</sub> w<sub>7</sub> w<sub>10</sub>
m<sub>2</sub>: w<sub>7</sub> w<sub>10</sub> w<sub>1</sub> w<sub>9</sub> w<sub>3</sub> w<sub>4</sub> w<sub>8</sub> w<sub>2</sub> w<sub>5</sub> w<sub>6</sub>
...
w<sub>1</sub>: m<sub>1</sub> m<sub>4</sub> m<sub>9</sub> m<sub>5</sub> m<sub>10</sub> m<sub>3</sub> m<sub>2</sub> m<sub>6</sub> m<sub>8</sub> m<sub>7</sub>
w<sub>2</sub>: m<sub>5</sub> m<sub>8</sub> m<sub>1</sub> m<sub>3</sub> m<sub>2</sub> m<sub>7</sub> m<sub>9</sub> m<sub>10</sub> m<sub>4</sub> m<sub>6</sub>
```

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Generating a random permutation

```
public static int[] Permutation(int n, Random rand) {
   int[] arr = IdentityPermutation(n);

   for (int i = 1; i < n; i++) {
      int j = rand.Next(0, i + 1);
      int temp = arr[i];
      arr[i] = arr[j];
      arr[j] = temp;
   }
   return arr;
}</pre>
```

Stable Matching Algorithms

- M Proposal Algorithm
 - Iterate over all m's until all are matched
- W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched
- Compare M-Proposal and W-Proposal algorithms for moderate sized n (n≥1000)
 - Plot average m-rank and w-rank as a function of n. Do you have a mathematical explanation of the curves?

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free

While there is a free m **Executed at most n² times**

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
 Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

A question to think about

- The problem has been formulated at a bipartite problem – with a matching between sets M and W
- What if all elements are in the same set X
 (and we assume |X| = 2n)
 - This is referred to as the stable roommates problem
- Does an analog of the G-S algorithm apply?
- Does the roommates problem always have a stable solution?