CSE 421
Introduction to Algorithms



* Reading

Announcements

— Chapter 3 (Mostly review)
— Start on Chapter 4

e Office Hours:

Richard Anderson

CSE2 344, Mon 3:30-4:30

CSE2 344, Fri 2:30-3:30

Raymond Gao

Allen 3™ Floor, Tue 5:30-6:30

CSE2 150, Thu 5:30-6:30

Sophie Robertson

Allen 4t Floor, Mon 11:30-1:30

Aman Thukral

Allen 2" Floor, Fri 3:30-5:30

Kaiyuan Liu

Allen 2" Floor, Tues 9:30-11:30

Tom Zhaoyang Tian

CSE2 153, Wed 9:30-11:30

Albert Weng

CSE2 131, Mon 10:30-11:30

CSE2 131, Fri 10:30-11:30




Schedule

* Monday
— Run time/Big-Oh (most of this deferred to section)
— Graph theory
— Search/Bipartite Matching
* Wednesday
— Connectivity
— Topological Sort
* Friday
— Greedy Algorithms



Run time / Big Oh

Run time function T(n)
— T(n) is the maximum time to solve an instance of size n
Disregard constant functions
T(n) is O(f(n)) [T:Z" 2 R]
— If n is sufficiently large, T(n) is bounded by a constant
multiple of f(n)
— Exist ¢, ng, such that for n > n,, T(n) < cf(n)
T(n) is Q(f(n)) [T:Z* 2 R"]
— If n is sufficiently large, T(n) is at least a constant multiple
of f(n)
— Exist € > 0, n,, such that for n > n,, T(n) > € f(n)



Graph Theory

G=(V, E)

— V —vertices

— E —edges

Undirected graphs

— Edges sets of two vertices {u, v}
Directed graphs

— Edges ordered pairs (u, v)
Many other flavors

— Edge / vertices weights

— Parallel edges

— Self loops



Definitions

Path: v, v,, ..., v,, with (v, v.,,) in E
— Simple Path

— Cycle

— Simple Cycle

Neighborhood

— N(v)

o N+(V)I N-(V)

Distance

Connectivity

— Undirected
— Directed (strong connectivity)

Trees

— Rooted
— Unrooted



Graph Representation

b V={a,b,c,d}
a
E ={{a, b}, {a, c}, {a, d}, {b, d} }
d
C
- b C d 1 1 1
- a d 1 0 1
=>> a 1 O 0
-+ 3 - b 1 1 0

Adjacency List Incidence Matrix



Graph search

* Find a path fromstot

S = {s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Pred[v] = u
if (v =1t) then path found



Breadth first search

* Explore vertices in layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. ..



Breadth First Search

e Build a BFS tree from s

Initialize Level[v] = -1 for all v;
Q ={s}
Level[s] = 1;
while Q is not empty
u = Q.Dequeue()
foreach v in N(u)
if (Level[v] == -1)
Q.Enqueue(v)
Pred[v] = u

Level[v] = Level[u] + 1



Key observation

* All edges go between vertices on the same
layer or adjacent layers

11



Bipartite Graphs

* A graph Vis bipartite if V can be partitioned
into V,, V, such that all edges go between V,
and V,

* A graph is bipartite if it can be two colored



Can this graph be two colored?



Algorithm

Run BFS
Color odd layers red, even layers blue

If no edges between the same layer, the graph
IS bipartite
If edge between two vertices of the same

layer, then there is an odd cycle, and the
graph is not bipartite



Theorem: A graph is bipartite if and only if
it has no odd cycles



Lemma 1

* |f a graph contains an odd cycle, it is not
bipartite



Lemma 2

* |f a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level



Lemma 3

e |f a graph has no odd length cycles, then it is
bipartite



Graph Search

e Data structure for next vertex to visit
determines search order




Graph search

Breadth First Search
S ={s}
while S is not empty
u = Dequeue(S)
if u is unvisited
visit u
foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}
while S is not empty
u=Pop(S)

if u is unvisited
visit u
foreach v in N(u)
Push(S, v)



Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

21



Depth First Search

 Each edge goes between,””

vertices on the same .
branch

* No cross edges

22



