
1/7/2024

1

CSE 421
Introduction to Algorithms

Winter 2024

Lecture 3

1

Announcements

• Reading
– Chapter 3 (Mostly review)
– Start on Chapter 4

• Office Hours:

2

Richard Anderson CSE2 344, Mon 3:30-4:30 CSE2 344, Fri 2:30-3:30

Raymond Gao Allen 3rd Floor, Tue 5:30-6:30 CSE2 150, Thu 5:30-6:30

Sophie Robertson Allen 4th Floor, Mon 11:30-1:30

Aman Thukral Allen 2nd Floor, Fri 3:30-5:30

Kaiyuan Liu Allen 2nd Floor, Tues 9:30-11:30

Tom Zhaoyang Tian CSE2 153, Wed 9:30-11:30

Albert Weng CSE2 131, Mon 10:30-11:30 CSE2 131, Fri 10:30-11:30

Schedule

• Monday
– Run time/Big-Oh (most of this deferred to section)

– Graph theory

– Search/Bipartite Matching

• Wednesday
– Connectivity

– Topological Sort

• Friday
– Greedy Algorithms

3

Run time / Big Oh

• Run time function T(n)
– T(n) is the maximum time to solve an instance of size n

• Disregard constant functions

• T(n) is O(f(n)) [T : Z+
→ R+]

– If n is sufficiently large, T(n) is bounded by a constant
multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is Ω(f(n)) [T : Z+
→ R+]

– If n is sufficiently large, T(n) is at least a constant multiple
of f(n)

– Exist ϵ > 0, n0, such that for n > n0, T(n) > ϵ f(n)

4

Graph Theory

• G = (V, E)
– V – vertices
– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

5

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)
– N+(v), N-(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

6

a
b

c
d

a
b

c
d

1/7/2024

2

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Incidence MatrixAdjacency List

7

Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v = t) then path found

8

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

9

Breadth First Search

• Build a BFS tree from s
Initialize Level[v] = -1 for all v;

Q = {s}

Level[s] = 1;

while Q is not empty

u = Q.Dequeue()

foreach v in N(u)

if (Level[v] == -1)

Q.Enqueue(v)

Pred[v] = u

Level[v] = Level[u] + 1

10

Key observation

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

11

Bipartite Graphs

• A graph V is bipartite if V can be partitioned
into V1, V2 such that all edges go between V1

and V2

• A graph is bipartite if it can be two colored

12

1/7/2024

3

Can this graph be two colored?

13

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph
is bipartite

• If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

14

Theorem: A graph is bipartite if and only if
it has no odd cycles

15

Lemma 1

• If a graph contains an odd cycle, it is not
bipartite

16

Lemma 2

• If a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

17

Lemma 3

• If a graph has no odd length cycles, then it is
bipartite

18

1/7/2024

4

Graph Search

• Data structure for next vertex to visit
determines search order

19

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

20

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

21

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12743

8 9

10 11

22

