Lecture03

CSE 421 Introduction to Algorithms

Winter 2024 Lecture 3

-1

Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- · Office Hours:

Richard Anderson	CSE2 344, Mon 3:30-4:30	CSE2 344, Fri 2:30-3:30
Raymond Gao	Allen 3 rd Floor, Tue 5:30-6:30	CSE2 150, Thu 5:30-6:30
Sophie Robertson	Allen 4th Floor, Mon 11:30-1:30	
Aman Thukral	Allen 2 nd Floor, Fri 3:30-5:30	
Kaiyuan Liu	Allen 2 nd Floor, Tues 9:30- 11 :30	
Tom Zhaoyang Tian	CSE2 153, Wed 9:30-11:30	
Albert Weng	CSE2 131, Mon 10:30-11:30	CSE2 131, Fri 10:30-11:30

Schedule

- Monday
 - Run time/Big-Oh (most of this deferred to section)
 - Graph theory
 - Search / Two-coloring
- Wednesday
 - Connectivity
 - Topological Sort
- Friday
 - Greedy Algorithms

Run time / Big Oh

- Run time function T(n)
 - T(n) is the maximum time to solve an instance of size n
- Disregard constant functions
- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is $\Omega(f(n))$ $[T: Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is at least a constant multiple of f(n)
 - Exist $\epsilon > 0$, n_0 , such that for $n > n_0$, $T(n) > \epsilon f(n)$

Graph Theory
$$|U| = n$$
, $|E| = M$

- G = (V, E)
 - V vertices
 - E edges
- · Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- · Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

N(a)={b,c,b?

Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E – Simple Path

- Cycle
- Simple Cycle
- Neighborhood
 - -N(v)
 - $-N^{+}(v), N^{-}(v)$
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation

Adjacency List

а

b

	1	1	1
1		0	1
1	0		0
1	1	0	

Incidence Matrix

Graph search

Find a path from s to t

```
S = \{s\}
while S is not empty
u = Select(S)
visit \ u
foreach \ v \ in \ N(u)
if \ v \ is \ unvisited
Add(S, \ v)
Pred[v] = u
if \ (v = t) \ then \ path \ found
```

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Breadth First Search

· Build a BFS tree from s

```
Initialize Level[v] = -1 for all v;

Q = \{s\}

Level[s] = 1;

while Q is not empty

u = Q.Dequeue()

foreach v in N(u)

if (Level[v] == -1)

Q.Enqueue(v)

Pred[v] = u

Level[v] = Level[u] + 1
```

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- · A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

old (yde > 7 bipartile

No old agale > bipartite

Lemma 1

 If a graph contains an odd cycle, it is not bipartite

Lemma 2

 If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Lemma 3

If a graph has no odd length cycles, then it is

bipartite
No odd langth cycle
No odd langth cycle
intra-land
elges in tigs

No athaleusle elder - color using BFS

Graph Search

 Data structure for next vertex to visit determines search order

Graph search

```
Breadth First Search
```

 $S = \{s\}$

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

 $for each \mathrel{\vee} in \mathrel{N}(u) \\$

Enqueue(S, v)

Depth First Search

 $S = \{s\}$

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

Depth First Search

 Each edge goes between vertices on the same branch

No cross edges

