1/8/24, 4:27 PM Lecture03

Lecture03

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 1/22

1/8/24, 4:27 PM

* Reading

Lecture03

Announcements

— Chapter 3 (Mostly review)
— Start on Chapter 4

* Office Hours:

Richard Anderson

C5E2 244, Mon 2:20-4:20

CSE2 244, Fri 2:20-2:20

Raymond Gao

Allen 2" Floor, Tue 5:20-5:20

CSEZ 150, Thu 5:20-5:20

Sophie Robertson

Allen 4™ Floor, Mon 11:30-1:20

Aman Thukral

Allen 2" Floor, Fri 2:20-5:20

Kaiyuan Liu

Allen 2" Floor, Tues 9:20-11:20

Tom Zhaoyang Tian

(CSE2 152, Wed 2:20-11:20

Albert Weng

C5E2 121, Mon 10:20-11:20

CSEZ 131, Fri 10:20-11:20

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

2/22

1/8/24, 4:27 PM Lecture03

Schedule

* Monday
— Run time/Big-Oh (most of this deferred to section)
— Graph theory
— Search / Two-coloring
* Wednesday
— Connectivity
— Topological Sort
* Friday
— Greedy Algorithms

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 3/22

1/8/24, 4:27 PM Lecture03

Run time / Big Oh

Run time function T(n)
— T(n) is the maximum time to solve an instance of size n

Disregard constant functions
T(n) is O(f(n)) [T:Z" = RY]

— If n is sufficiently large, T(n) is bounded by a constant
multiple of f(n)

— Exist ¢, n,, such that for n > ng, T(n) < c f(n)

* T(n)is Q(f(n)) [T:Z" = R]
— If nis sufficiently large, T(n) is at least a constant multiple
of f(n)

— Exist € > 0, n,, such that for n > ng, T(n) > € f(n)

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

4/22

1/8/24, 4:27 PM Lecture03

Graph Theory
G=(V,E) N]Zn) KE‘_‘M
— V —vertices

— E—edges /
Undirected graphs ¥
— Edges sets of two vertices {u, v} (\L
Directed graphs /P y

— Edges ordered pairs (u, v) 0 5/\7
Many other flavors

— Edge / vertices weights
— Parallel edges &O

— Self loops

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 5122

1/8/24, 4:27 PM

Lecture03

Definitions

Path: vy, v,, ..., v, with (v, v..,;) in E
— Simple Path

— Cycle

— Simple Cycle

Neighborhood

= N(v)

— N*{(v), N{(v)

Distance

Connectivity

— Undirected
— Directed (strong connectivity)

Trees

— Rooted
— Unrooted

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

Syt

6/22

1/8/24, 4:27 PM Lecture03

Graph Representation

b V={a,b, c d}
E={{a b} {a.c}.{a d}{b. d}}

(1)
. a0l Mw\\ /O

a t— b c}—d 1111

b » A -+ d 1 0 1

o N 110 0

d » 2 b Ly1yf4o
Adjacency List Incidence Matrix

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

7/22

1/8/24, 4:27 PM Lecture03

Graph search

* Find a pathfromstot

S ={s}

while S is not empty
u = Select(S)
visit u

foreach v in N{u)
if v is unvisited
Add(S, v)

if (v =t) then path found

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 8/22

1/8/24, 4:27 PM Lecture03

Breadth first search

* Explore vertices in layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3 ... /

4

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 9/22

1/8/24, 4:27 PM Lecture03

Breadth First Search

* Build a BFS tree from s

Initialize Level[v] = -1 for all v;
Q = {s}
Level[s] = 1;
while Q is not empty
u = Q.Dequeue()
foreach v in N(u)
if (Level[v] ==-1)
Q.Enqueue(v)
Pred[v] =u

Level[v] =Level[u] + 1

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 10/22

1/8/24, 4:27 PM Lecture03

Key observation

* All edges go between vertices on the same
layer or adjacent layers

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

1

11/22

1/8/24, 4:27 PM Lecture03

Bipartite Graphs

* Agraph Vis bipartite if V can be partitioned
into V,, V, such that all edges go between V,
and V,

* Agraph is bipartite if it can be two colored

12

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 12/22

1/8/24, 4:27 PM Lecture03

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 13/22

1/8/24, 4:27 PM Lecture03

Algorithm

* Run BFS
* Color odd layers red, even layers blue

* If no edges between the same layer, the graph
is bipartite

* |f edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 14/22

1/8/24, 4:27 PM Lecture03

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 15/22

1/8/24, 4:27 PM Lecture03

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 16/22

1/8/24, 4:27 PM Lecture03

Lemma 2

* |f a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points arefih the :

17

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

17/22

Lemma 3

* If a graph has no odd length cycles, then it is
bipartite

LG ¢
Na @3 \0 MEL\— 9; ﬂ(\rﬂa*—lcf}b\

) v Wé

18

1/8/24, 4:27 PM Lecture03

Graph Search

* Data structure for next vertex to visit
determines search order

19

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 19/22

1/8/24, 4:27 PM Lecture03

Graph search

Breadth First Search Depth First Search
S ={s} S ={s}
while S is not empty while S is not empty
u = Dequeue(S) u = Pop(S)
if u is unvisited if u is unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)
Enqueue(s, v) Push(S, v)

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 20/22

1/8/24, 4:27 PM Lecture03

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

1

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html 21/22

1/8/24, 4:27 PM

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture03/Lecture03.html

Lecture03

Depth First Search

—_
— -
-—

-

Each edge goes between,””
vertices on the same i
branch \

i
\

No cross edges

22

22/22

