1/10/24, 3:14 PM Lecture04

Lecture04

CSE 421
Introduction to Algorithms

Winter 2024

Lecture 4

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 119

1/10/24, 3:14 PM Lecture04

Announcements

* Reading
— Start on Chapter 4

* Homework due tonight, new homework
available

* Class Friday???
* No class next Monday (MLK)

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 2/19

1/10/24, 3:14 PM Lecture04

Graph Theory

« G=(V, E) + Path: v, v,, ..., v, with
— V: vertices, |V|=n \ ‘%{i_l} In
— E: edges, |E|]=m — Simple Path
 Undirected graphs B g.?de
: — Simple Cycle
— Edges sets of two vertices -
fu, v} * Neighborhood
* Directed graphs — N(v)
— Edges ordered pairs (u, v) * D|5taﬂCE‘r ,
* Many other flavors * Connectivity
— Edge / vertices weights y Cncinecied .
— Parallel edges — Directed (strong connectivity)
— Self loops * Trees
— Rooted
— Unrooted

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 3/19

1/10/24, 3:14 PM Lecture04

Last Lecture

* Bipartite Graphs : two-colorable graphs

* Breadth First Search algorithm for testing two-
colorability
— Two-colorable iff no odd length cycle

— BFS has cross edge iff graph has odd cycle

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 4/19

1/10/24, 3:14 PM Lecture04

Graph Search

* Data structure for next vertex to visit
determines search order

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 5/19

1/10/24, 3:14 PM Lecture04

Graph search

Breadth First Search Depth First Search
S ={s} S ={s}
while S is not empty while S is not empty
u = Dequeue(S) u = Pop(S)
if u is unvisited if u is unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)
Enqueue(s, v) Push(S, v)

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 6/19

1/10/24, 3:14 PM Lecture04

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 7119

1/10/24, 3:14 PM Lecture04

Depth First Search

* Each edge goes between,””
vertices on the same i
branch \

* No cross edges

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 8/19

1/10/24, 3:14 PM Lecture04

C}‘[l&*‘m3
Connected Components T

2

* Undirected Graphs L

i

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 9/19

1/10/24, 3:14 PM Lecture04

Computing Connected Components in
O(n+m) time

* Asearch algorithm from a vertex v can find all
vertices in v’'s component

 While there is an unvisited vertex v, search
from v to find a new component

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 10/19

1/10/24, 3:14 PM Lecture04

Directed Graphs

* A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

1

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 11/19

1/10/24, 3:14 PM Lecture04

ldentify the Strongly Connected

| O g
p N Q

12

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 12/19

1/10/24, 3:14 PM Lecture04

Strongly connected components can be
found in O(n+m) time

* But it’s tricky!

* Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time i «.H ¥){

Vs X
], f'h‘ &.\\ we

AR\

76'
5{\/% Y
x (VY

13

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 13/19

1/10/24, 3:14 PM Lecture04

Topological Sort

* Given a set of tasks with precedence
constraints,H i of the tasks

14

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 14/19

1/10/24, 3:14 PM Lecture04

Find a topological order for the following
graph

@@h -

"

PR
L
»

N\~

15

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html

15/19

1/10/24, 3:14 PM Lecture04

If a graph has a cycle, there is no

topological

* Consider the first vertex
on the cycle in the
topological sort

* |t must have an
incoming edge (B)

Definition: A graph is
Acyclic if it has no cycles

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html

sort

(A) F

16

16/19

1/10/24, 3:14 PM Lecture04

Lemma: If a (finitej-graph is acyclic, it has a
vertex with in-degree O

* Proof:
— Pick a vertex v,, if it has in-degree 0 then done

— If not, let (v, v,) be an edge, if v, has in-degree O
then done

— If not, let (v, v,) be an edge . ..

— If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html

17/19

1/10/24, 3:14 PM Lecture04

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v
Delete the vertex v and all out going Lt@@s («;"

S

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html

18/19

1/10/24, 3:14 PM Lecture04

Details for O(n+m) implementation

* Maintain a list of vertices of in-degree O

*

Each vertex keeps track of its in-degree

*

Update in-degrees and list when edges are
removed

* m edge removals at O(1) cost each

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture04/Lecture04.html 19/19

