Lecture04

CSE 421 Introduction to Algorithms

Winter 2024 Lecture 4

Announcements

- Reading
 - Start on Chapter 4
- Homework due tonight, new homework available
- Class Friday???
- No class next Monday (MLK)

Graph Theory

- G = (V, E)
 - V: vertices, |V|= n
 - E: edges, |E| = m
- · Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Last Lecture

- Bipartite Graphs: two-colorable graphs
- Breadth First Search algorithm for testing twocolorability
 - Two-colorable iff no odd length cycle
 - BFS has cross edge iff graph has odd cycle

Graph Search

 Data structure for next vertex to visit determines search order

ĕ

Graph search

```
Breadth First Search
```

 $S = \{s\}$

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

 $S = \{s\}$

while S is not empty

u = Pop(S)

if u is unvisited

∨isit u

foreach v in N(u)

Push(S, v)

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

- /

Depth First Search

 Each edge goes between vertices on the same branch

No cross edges

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in O(n+m) time

But it's tricky!

Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

 Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

B

Definition: A graph is Acyclic if it has no cycles

Lemma: If a <u>(finite)</u> graph is acyclic, it has a vertex with in-degree 0

Proof:

- Pick a vertex v₁, if it has in-degree 0 then done
- If not, let (v₂, v₁) be an edge, if v₂ has in-degree 0 then done
- If not, let (v_3, v_2) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

8V1

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

B

B

18

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each