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Announcements

• Today’s lecture

– Kleinberg-Tardos,  4.2, 4.3

• Friday

– Kleinberg-Tardos, 4.4, 4.5 
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Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-

rank and w-rank as a 

function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62



Approximation Algorithms

• Compare solution of approximation 

algorithm with the optimal algorithm

– Earliest deadline first

– Earliest starttime first

– Shortest interval first

– Fewest conflicts first
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Scheduling Intervals

• Given a set of intervals

– What is the largest set of non-overlapping 
intervals

– Compare heuristics with optimal

• Suppose the n intervals are “random”

– What is the expected number of independent 
intervals

– Generate random interval [a,b]:
• x = randomDouble(0, 1.0); y = randomDouble(x, 1.0)

• a = min(x,y); b = max(x,y)
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Greedy Algorithms

• Solve problems with the simplest possible 

algorithm

• The hard part: showing that something 

simple actually works

• Today’s problems (Sections 4.2, 4.3)

– Homework Scheduling

– Optimal Caching

– Subsequence testing
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Homework Scheduling

• Tasks to perform

• Deadlines on the tasks

• Freedom to schedule tasks in any order

• Can I get all my work turned in on time?

• If I can’t get everything in, I want to 

minimize the maximum lateness
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Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness:   Li = fi – di if fi ≥ di
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Example
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Determine the minimum lateness
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Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal
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Analysis

• Suppose the jobs are ordered by deadlines,     

d1 ≤ d2 ≤ . . . ≤ dn

• A schedule has an inversion if job j is scheduled 

before i where j > i

• The schedule A computed by the greedy 

algorithm has no inversions.

• Let O be the optimal schedule, we want to show 

that A has the same maximum lateness as O
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List the inversions
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a4 a2 a3a1
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Lemma: There is an optimal 

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the 

remainder of the proof

a4 a2 a3 a1
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Lemma

• If there is an inversion i, j, there is a pair of 

adjacent jobs i’, j’ which form an inversion
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Interchange argument

• Suppose there is a pair of jobs i and j, with  

di ≤ dj,  and j scheduled immediately 

before i.  Interchanging i and j does not 

increase the maximum lateness.  

di djdi dj

j i ji
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Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4
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Real Proof

• There is an optimal schedule with no 
inversions and no idle time.

• Let O be an optimal schedule k inversions, 
we construct a new optimal schedule with 
k-1 inversions

• Repeat until we have an optimal schedule 
with 0 inversions

• This is the solution found by the earliest 
deadline first algorithm

18



Result

• Earliest Deadline First algorithm 

constructs a schedule that minimizes the 

maximum lateness
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Homework Scheduling

• How is the model unrealistic?
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Extensions

• What if the objective is to minimize the 
sum of the lateness?

– EDF does not work

• If the tasks have release times and 
deadlines, and are non-preemptable, the 
problem is NP-complete

• What about the case with release times 
and deadlines where tasks are 
preemptable?
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Optimal Caching

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched
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Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
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Optimal Caching

• If you know the sequence of requests, 
what is the optimal replacement pattern?

• Note – it is rare to know what the requests 
are in advance – but we still might want to 
do this:
– Some specific applications, the sequence is 

known
• Register allocation in code generation

– Competitive analysis, compare performance 
on an online algorithm with an optimal offline 
algorithm
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Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D
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Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution 

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure 

the caches have the same configuration . . .
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Subsequence Testing

• Is a1a2…am a subsequence of b1b2…bn ?

– e.g. is A,B,C,D,C,B,A a subsequence of 

A,A,C,B,A,B,C,B,D,B,D,C,B,C,B,A,B,A

A B C D

A A C B A B C B D B D
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Friday
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