
CSE 421

Introduction to Algorithms

Richard Anderson

Winter 2024

Lecture 6 – Greedy Algorithms II

1

Announcements

• Today’s lecture

– Kleinberg-Tardos, 4.2, 4.3

• Friday

– Kleinberg-Tardos, 4.4, 4.5

2

Stable Matching Results

• Averages of 5 runs

• Much better for M than W

• Why is it better for M?

• What is the growth of m-

rank and w-rank as a

function of n?

n m-rank w-rank
500 5.10 98.05

500 7.52 66.95

500 8.57 58.18

500 6.32 75.87

500 5.25 90.73

500 6.55 77.95

1000 6.80 146.93

1000 6.50 154.71

1000 7.14 133.53

1000 7.44 128.96

1000 7.36 137.85

1000 7.04 140.40

2000 7.83 257.79

2000 7.50 263.78

2000 11.42 175.17

2000 7.16 274.76

2000 7.54 261.60

2000 8.29 246.62

Approximation Algorithms

• Compare solution of approximation

algorithm with the optimal algorithm

– Earliest deadline first

– Earliest starttime first

– Shortest interval first

– Fewest conflicts first

4

Scheduling Intervals

• Given a set of intervals

– What is the largest set of non-overlapping
intervals

– Compare heuristics with optimal

• Suppose the n intervals are “random”

– What is the expected number of independent
intervals

– Generate random interval [a,b]:
• x = randomDouble(0, 1.0); y = randomDouble(x, 1.0)

• a = min(x,y); b = max(x,y)

5

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Today’s problems (Sections 4.2, 4.3)

– Homework Scheduling

– Optimal Caching

– Subsequence testing

6

Homework Scheduling

• Tasks to perform

• Deadlines on the tasks

• Freedom to schedule tasks in any order

• Can I get all my work turned in on time?

• If I can’t get everything in, I want to

minimize the maximum lateness

7

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness: Li = fi – di if fi ≥ di

8

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

a1

a2

9

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

a1

a2

a3

a4

10

Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

11

Analysis

• Suppose the jobs are ordered by deadlines,

d1 ≤ d2 ≤ . . . ≤ dn

• A schedule has an inversion if job j is scheduled

before i where j > i

• The schedule A computed by the greedy

algorithm has no inversions.

• Let O be the optimal schedule, we want to show

that A has the same maximum lateness as O

12

List the inversions

2

3

4

5

4

5

6

12

DeadlineTime

a1

a2

a3

a4

a4 a2 a3a1

13

Lemma: There is an optimal

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

14

Lemma

• If there is an inversion i, j, there is a pair of

adjacent jobs i’, j’ which form an inversion

15

Interchange argument

• Suppose there is a pair of jobs i and j, with

di ≤ dj, and j scheduled immediately

before i. Interchanging i and j does not

increase the maximum lateness.

di djdi dj

j i ji

16

Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4

17

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

18

Result

• Earliest Deadline First algorithm

constructs a schedule that minimizes the

maximum lateness

19

Homework Scheduling

• How is the model unrealistic?

20

Extensions

• What if the objective is to minimize the
sum of the lateness?

– EDF does not work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

21

Optimal Caching

• Caching problem:

– Maintain collection of items in local memory

– Minimize number of items fetched

22

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

23

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
• Register allocation in code generation

– Competitive analysis, compare performance
on an online algorithm with an optimal offline
algorithm

24

Farthest in the future algorithm

• Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

25

Correctness Proof

• Sketch

• Start with Optimal Solution O

• Convert to Farthest in the Future Solution

F-F

• Look at the first place where they differ

• Convert O to evict F-F element

– There are some technicalities here to ensure

the caches have the same configuration . . .

26

Subsequence Testing

• Is a1a2…am a subsequence of b1b2…bn ?

– e.g. is A,B,C,D,C,B,A a subsequence of

A,A,C,B,A,B,C,B,D,B,D,C,B,C,B,A,B,A

A B C D

A A C B A B C B D B D

27

ABC

C B C B A B A

Friday

28

