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Minimum Spanning Trees
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Bottleneck Shortest Path

• Define the bottleneck distance for a path 

P,  LenB(P)  to be the maximum cost edge 

along the path
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LenB(x,y) = Min {P from x to y | LenB(P) }
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Dijkstra’s Algorithm

for Bottleneck Shortest Paths

S = { };    d[s] = negative infinity;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))
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Minimum Spanning Tree

• Introduce Problem

• Demonstrate Prim’s and Kruskal’s 

algorithms

• Provide proofs that the algorithms work
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Minimum Spanning Tree
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Greedy Algorithms for Minimum 

Spanning Tree

• Extend a tree by 
including the 
cheapest out going 
edge

• Add the cheapest 
edge that joins 
disjoint components

• Delete the most 
expensive edge that 
does not disconnect 
the graph

4

115

7

20

8

22

a

b c

d

e

6



Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest 

out going edge
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Greedy Algorithm 2

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 

components
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Dijkstra’s Algorithm

for Minimum Spanning Trees

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], c(v, w))
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Minimum Spanning Tree
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Greedy Algorithms for Minimum 

Spanning Tree

• [Prim] Extend a tree by 

including the cheapest 

out going edge

• [Kruskal] Add the 

cheapest edge that joins 

disjoint components
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Why do the greedy algorithms 

work?

• For simplicity, assume all edge costs are 

distinct
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Edge inclusion lemma

• Let S be a subset of V, and suppose e = 

(u, v) is the minimum cost edge of E, with 

u in S and v in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree

S V - S

e
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Proof 

• Suppose T is a spanning tree that does not contain e

• Add e to T, this creates a cycle

• The cycle must have some edge e1 = (u1, v1) with u1 in S 
and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 

between S and V-S

e1
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Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the 

MST by Prim or Kruskal, the edge is the 

minimum cost edge between S and V-S 

for some set S.
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Prim’s Algorithm

S = { };    T = { };

while S != V

choose the minimum cost edge                    

e = (u,v), with u in S, and v in V-S

add e to T

add v to S
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Prove Prim’s algorithm computes 

an MST 

• Show an edge e is in the MST when it is 

added to T
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Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}};  T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the 

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T
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Prove Kruskal’s algorithm 

computes an MST 

• Show an edge e is in the MST when it is 

added to T
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Dealing with the assumption of no 

equal weight edges

• Force the edge weights to be distinct

– Give a tie breaking rule for equal weight 

edges 
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Application: Clustering

• Given a collection of points in an r-

dimensional space and an integer K, 

divide the points into K sets that are 

closest together
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Distance clustering

• Divide the data set into K subsets to 

maximize the distance between any pair of 

sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}
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Divide into 2 clusters
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Divide into 3 clusters
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Divide into 4 clusters
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Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}};  T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the 

minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj
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K-clustering
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Shortest paths in directed 

graphs vs undirected graphs
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What about the minimum spanning 

tree of a directed graph?

• Must specify the root r

• Branching:  Out tree with root r
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Finding a minimum branching
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Finding a minimum branching

• Remove all edges going into r

• Normalize the edge weights, so the 

minimum weight edge coming into each 

vertex has weight zero
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minimum branching
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Finding a minimum branching

• Consider the graph that consists of the 

minimum cost edge coming in to each 

vertex

– If this graph is a branching, then it is the 

minimum cost branching

– Otherwise, the graph contains one or more 

cycles

• Collapse the cycles in the original graph to super 

vertices

• Reweight the graph and repeat the process
32



Finding a minimum branching
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Correctness Proof

• The lemma justifies using the 

edges of the cycle in the 

branching

• An induction argument is 

used to cover the multiple 

levels of compressing cycles

Lemma 4.38  Let C be a cycle in G consisting of edges of 

cost 0 with r not in C.  There is an optimal branching rooted 

at r that has exactly one edge entering C.
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