Lecture08

CSE 421 Introduction to Algorithms

Winter 2024
Lecture 8
Minimum Spanning Trees

Bottleneck Shortest Path

 Define the bottleneck distance for a path P, Len_B(P) to be the maximum cost edge along the path

 $Len_B(x,y) = Min \{P \text{ from } x \text{ to } y \mid Len_B(P) \}$

Dijkstra's Algorithm for Bottleneck Shortest Paths

 $S = \{ \}; d[s] = negative infinity; d[v] = infinity for v != s$

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each win the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

Minimum Spanning Tree

- Introduce Problem
- Demonstrate Prim's and Kruskal's algorithms
- Provide proofs that the algorithms work

Greedy Algorithms for Minimum Spanning Tree

Extend a tree by including the cheapest out going edge

Add the cheapest edge that joins disjoint components

 Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge

Construct the MST with Prim's algorithm starting from vertex a

Label the edges in order of insertion

Greedy Algorithm 2 Kruskal's Algorithm

Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Dijkstra's Algorithm for Minimum Spanning Trees

 $S = \{ \}; d[s] = 0; d[v] = infinity for v != s$

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each win the neighborhood of v

d[w] = min(d[w], c(v, w))

mlogn

Minimum Spanning Tree

Undirected Graph G=(V,E) with edge weights

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components

Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e =

 (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

e is the minimum cost edge between S and V-S

- Suppose T is a spanning tree that does not contain e
- · Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S

- T₁ = T {e₁} + {e} is a spanning tree with lower cost
- · Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

$$S = \{ \}; T = \{ \};$$

while S != V

choose the minimum cost edge

e = (u,v), with u in S, and v in V-S

add e to T

add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let C =
$$\{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}$$

while $|C| > 1$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_i by C_i U C

Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Give a tie breaking rule for equal weight edges

Application: Clustering

 Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

 $-\operatorname{dist}(S_1, S_2) = \min \left\{ \operatorname{dist}(x, y) \mid x \text{ in } S_1, y \text{ in } S_2 \right\}$

Distance Clustering Algorithm

Let C =
$$\{\{v_1\}, \{v_2\}, ..., \{v_n\}\}; T = \{\}$$

while $|C| > K$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Shortest paths in directed graphs vs undirected graphs

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

Finding a minimum branching

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process

Finding a minimum branching

Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

