1/23/24, 3:12 PM Lecture08

Lecture(08

CSE 421
Introduction to Algorithms

Winter 2024
Lecture 8
Minimum Spanning Trees

https://courses.cs.washington.edu/courses/cse421/24willectures/Lecture08/Lecture08.html

1/34

1/23/24, 3:12 PM Lecture08

Bottleneck Shortest Path

» Define the bottleneck distance for a path
P, Leng(P) to be the maximum cost edge
along the path

Leng(x,y) = Min {P from x to y | Leng(P) }

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 2/34

1/23/24, 3:12 PM Lecture08

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S ={}; d[s] =negative infinity; d[v] = infinity for v I=s
While S 1=V

Choose v in V-S with minimum d[v]

Addvto S

For each w in the neighborhood of v

diw] = min(d[w], max(d[v], c(v, w)))

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 3/34

1/23/24, 3:12 PM Lecture08

Minimum Spanning Tree

* Introduce Problem

+ Demonstrate Prim’s and Kruskal's
algorithms

* Provide proofs that the algorithms work

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 4/34

1/23/24, 3:12 PM Lecture08

Minimum Spanning Tree
VL»-J;T‘LJ«J \ C,Ovmtc!"lf)

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 5/34

1/23/24, 3:12 PM Lecture08

Greedy Algorithms for Minimum
Spanning Tree
- Extend atree by £ 2 2

Including the
cheapest out going \‘7
edge L \,,J"“

« Addthe Cheapeét
edge that joins
disjoint components

+ Delete the most
expensive edge that
doss not disconnect
the-graph

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 6/34

1/23/24, 3:12 PM Lecture08

Greedy Algorithm 1
Prim’s Algorithm

« Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 7134

1/23/24, 3:12 PM Lecture08

Greedy Algorithm 2
Kruskal's Algorithm

« Add the cheapest edge that joins disjoint
components

Constructthe MST
with Kruskal's
algorithm

Label the edges in
order of insertion

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

8/34

1/23/24, 3:12 PM Lecture08

Dijkstra’s Algorithm
for Minimum Spanning Trees

S={} d[s]=0; d[v]=infinity forv!=s kéjfﬁjﬁ\

While S 1=V DA
Choose v in V-S with minimum d[v]

Addvto S

For each w in the neighborhood of v

dw] = min(d[w], c(v, w))

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

9/34

1/23/24, 3:12 PM Lecture08

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 weights

10

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 10/34

1/23/24, 3:12 PM Lecture08

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by
including the cheapest
out going edge

« [Kruskal] Add the
cheapest edge that joins
disjoint components

11

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 11/34

1/23/24, 3:12 PM Lecture08

Why do the greedy algorithms
work?

* For simplicity, assume all edge costs are
distinct

12

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 12/34

1/23/24, 3:12 PM Lecture08

Edge inclusion lemma

* Let S be a subset of V, and suppose e =
(U, v) is the minimum cost edge of E, with
uinSandvinV-S

* eis In every minimum spanning tree of G

— Or equivalently, if eis not in T, then T Is not a
minimum spanning tree

13

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

13/34

1/23/24, 3:12 PM Lecture08

e is the minimum cost edge
between S and V-S

Proof

« Suppose T is a spanning tree that does not contain e
« AddetoT, this creates a cycle

« The cycle must have some edge e, = (U, vy) with u, in S
and v, in V-8

« T,=T-{e,}+{e}is aspanning tree with lower cost
« Hence, T is not a minimum spanning tree

14

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 14/34

1/23/24, 3:12 PM Lecture08

Optimality Proofs

* Prim’'s Algorithm computes a MST
+ Kruskal's Algorithm computes a MST

« Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S

for some set S.

15

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 15/34

1/23/24, 3:12 PM Lecture08

Prim’s Algorith

S={} T={k é? I

while S =V N/

choose the minimum cost edg
e=(uv),withuin S, andvin V-S

F l s
addetoT e 9
addvtoS

16

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 16/34

1/23/24, 3:12 PM Lecture08

Prove Prim’s algorithm computes
an MST

« Show an edge e isinthe MST when itis
added to T

17

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 17/34

1/23/24, 3:12 PM Lecture08

Kruskal's Algorithm

Let C = {{vi}, {va}, . . ., {vath T={}
while |C| > 1

Lete = (u, v)with uin C, and | be the
minimum cost edge joipkg distinct sets in C

oo

Replace C, and
Addeto T

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 18/34

1/23/24, 3:12 PM Lecture08

Prove Kruskal's algorithm
computes an MST

« Show an edge e is inthe MST when it is
addedto T

19

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 19/34

1/23/24, 3:12 PM Lecture08

Dealing with the assumption of no
equal weight edges

* Force the edge weights to be distinct

— Give a tie breaking rule for equal weight
edges

20

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 20/34

1/23/24, 3:12 PM Lecture08

Application: Clustering

« Given a collection of points in an r-
dimensional space and an integer K,
divide the points into K sets that are
closest together

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

21

21/34

1/23/24, 3:12 PM Lecture08

Distance clustering

* Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X IN S;, y In S5}

22

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

22/34

1/23/24, 3:12 PM Lecture08

Divide into 2 clusters

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 23/34

1/23/24, 3:12 PM Lecture08

Divide into 3 clusters

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 24/34

1/23/24, 3:12 PM Lecture08

Divide into 4 clusters

o OEPOO O@?O

25

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

25/34

1/23/24, 3:12 PM Lecture08

Distance Clustering Algorithm

Let C = {{vi}, {Vah,. . .. {vud}s T={}
while |C| > K

Lete = (u, v)with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U G

26

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 26/34

1/23/24, 3:12 PM Lecture08

K-clustering

27

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 27134

1/23/24, 3:12 PM Lecture08

Shortest paths in directed
graphs vs undirected graphs

28

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 28/34

1/23/24, 3:12 PM Lecture08

What about the minimum spanning
tree of a directed graph?

+ Must specify the rootr
« Branching: Outtree with root r

= 2 __(d)

Assume all vertices reachable from r Also callecd an arborescence
29

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 29/34

1/23/24, 3:12 PM Lecture08

Finding a minimum branching

30

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 30/34

1/23/24, 3:12 PM Lecture08

Finding a minimum branching

« Remove all edges going into r

 Normalize the edge weights, so the
minimum weight edge coming into each
vertex has weight zero

?7 S(f
2 £ 0 3

This does not change the edges of the
minimum branching y

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 31/34

1/23/24, 3:12 PM Lecture08

Finding a minimum branching

« Consider the graph that consists of the
minimum cost edge coming in to each
vertex

— If this graph Is a branching, then it is the
minimum cost branching

— Otherwise, the graph contains one or more
cycles

» Collapse the cycles in the original graph to super
vertices

+ Reweight the graph and repeat the process
32

https://courses.cs.washington.edu/courses/cse421/24wil/lectures/Lecture08/Lecture08.html

32/34

1/23/24, 3:12 PM Lecture08

Finding a minimum branching

33

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 33/34

1/23/24, 3:12 PM Lecture08

Correctness Proof

Lemma 4.38 LetC be a cycle in G consisting of edges of
cost 0O withr notin C. There is an optimal branching rooted
at r that has exactly one edge entering C.

* The lemma justifies using the
edges of the cycle in the
branching

« An induction argument is
used to cover the multiple
levels of compressing cycles

https://courses.cs.washington.edu/courses/cse421/24wi/lectures/Lecture08/Lecture08.html 34/34

