
CSE 421

Introduction to Algorithms

Richard Anderson

Lecture 10, Winter 2024

Divide and Conquer

1

Announcements

• Divide and Conquer and
Recurrences
– Recurrence Techniques

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

– Quicksort and Median Finding

• Dynamic Programming

• Midterm, Friday, February 9

2

Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

• T(n) = a T(n/b) + O(nd)

– T(n) = O(nd) if d > logb a

– T(n) = O(nd log n) if d = logb a

– T(n) = O(nlogba) if d < logb a
3

T(n) ≤ T(3n/4) + T(n/5) + 20 n

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u | | c d| | f h|

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

A N x N matrix can be viewed as

a 2 x 2 matrix with entries that

are (N/2) x (N/2) matrices.

The recursive matrix

multiplication algorithm

recursively multiplies the

(N/2) x (N/2) matrices and

combines them using the

equations for multiplying 2 x 2

matrices

=

4

Recursive Matrix Multiplication

• How many recursive calls are made at each

level?

– 8, for the multiplication of n/2 X n/2 submatrices

• How much work in combining the results?

– O(n2), for matrix addition and copying matrices

• What is the recurrence?

– T(n) = 8 T(n/2) + n2; T(2) = 1;

5

T(n) = 8 T(n/2) + n2

6

n

n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2

T(n) = 4T(n/2) + n
Total Work

n/4n/4 n/4 n/4 n/4n/4 n/4 n/4 n/4n/4 n/4 n/4n/4n/4 n/4 n/4

n/2 n/2 n/2 n/2

n

7

T(n) = 2T(n/2) + n2

8

T(n) = 2T(n/2) + n1/2

9

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

10

What you really need to know

about recurrences

• Work per level changes geometrically with

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

11

Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

12

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u| | c d| | f h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2= (a + d)(e + h)

p3= (a – c)(e + g)

p4= (a + b)h

p5= a(g – h)

p6= d(f – e)

p7= (c + d)e

From AHU 1974

Recurrence for Strassen’s

Algorithm

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.8073549221
14

Strassen’s Algorithm

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

• Base case standard multiplication for single entries

• Recurrence: T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)

• Practical for n ~ 64

• Standard trick – switch to normal algorithm for small
values of n

15

Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine step

• D&C Algorithms
– Strassen’s Algorithm – Matrix Multiplication
– Inversions
– Median
– Closest Pair
– Integer Multiplication
– FFT

16

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number

of inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5

17

Application

• Counting inversions can be use to

measure how close ranked preferences

are

– People rank 20 movies, based on their

rankings you cluster people who like that

same type of movie

18

Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

19

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44

20

Problem – how do we count inversions

between sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count

when an element is moved from the upper array to the

solution
21

Use the merge algorithm to count

inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging

22

Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence”

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z

23

Closest Pair Problem (2D)

• Given a set of points find the pair of points

p, q that minimizes dist(p, q)

24

Divide and conquer

• If we solve the problem on two subsets,

does it help? (Separate by median x

coordinate)

d1 d2

25

Packing Lemma

Suppose that the minimum distance between

points is at least d, what is the maximum number of

points that can be packed in a ball of radius d?

26

Combining Solutions

• Suppose the minimum separation from the

sub problems is d

• In looking for cross set closest pairs, we

only need to consider points with d of the

boundary

• How many cross border interactions do we

need to test?

27

A packing lemma bounds the

number of distances to check

d

28

Details

• Preprocessing: sort points by y

• Merge step

– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most
d above

• Find lowest point on the other side that is at most d
below

• Compare with the points in this interval (there are
at most 6)

29

Identify the pairs of points that are compared

in the merge step following the recursive calls

30

Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)

31

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:
32

Recursive Multiplication Algorithm

(First attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:

33

Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

34

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let x = x1 2n/2 + x0 and y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)

Return a2n + (p – a – b)2n/2 + b

Recurrence: T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…
35

