
1

CSE 421

Introduction to Algorithms

Richard Anderson

Lecture 10, Winter 2024

Divide and Conquer

1

Announcements

• Divide and Conquer and
Recurrences
– Recurrence Techniques

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

– Quicksort and Median Finding

• Dynamic Programming

• Midterm, Friday, February 9

2

Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

• T(n) = a T(n/b) + O(nd)

– T(n) = O(nd) if d > logb a

– T(n) = O(nd log n) if d = logb a

– T(n) = O(nlogba) if d < logb a
3

T(n) ≤ T(3n/4) + T(n/5) + 20 n

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u | | c d| | f h|

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

A N x N matrix can be viewed as

a 2 x 2 matrix with entries that

are (N/2) x (N/2) matrices.

The recursive matrix

multiplication algorithm

recursively multiplies the

(N/2) x (N/2) matrices and

combines them using the

equations for multiplying 2 x 2

matrices

=

4

Recursive Matrix Multiplication

• How many recursive calls are made at each

level?

– 8, for the multiplication of n/2 X n/2 submatrices

• How much work in combining the results?

– O(n2), for matrix addition and copying matrices

• What is the recurrence?

– T(n) = 8 T(n/2) + n2; T(2) = 1;

5

T(n) = 8 T(n/2) + n2

6

n

n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2

2

T(n) = 4T(n/2) + n
Total Work

n/4n/4 n/4 n/4 n/4n/4 n/4 n/4 n/4n/4 n/4 n/4n/4n/4 n/4 n/4

n/2 n/2 n/2 n/2

n

7

T(n) = 2T(n/2) + n2

8

T(n) = 2T(n/2) + n1/2

9

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

10

What you really need to know

about recurrences

• Work per level changes geometrically with

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

11

Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

12

3

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u| | c d| | f h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2= (a + d)(e + h)

p3= (a – c)(e + g)

p4= (a + b)h

p5= a(g – h)

p6= d(f – e)

p7= (c + d)e

From AHU 1974

Recurrence for Strassen’s

Algorithm

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.8073549221
14

Strassen’s Algorithm

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

• Base case standard multiplication for single entries

• Recurrence: T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)

• Practical for n ~ 64

• Standard trick – switch to normal algorithm for small
values of n

15

Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine step

• D&C Algorithms
– Strassen’s Algorithm – Matrix Multiplication
– Inversions
– Median
– Closest Pair
– Integer Multiplication
– FFT

16

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number

of inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5

17

Application

• Counting inversions can be use to

measure how close ranked preferences

are

– People rank 20 movies, based on their

rankings you cluster people who like that

same type of movie

18

4

Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

19

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44

20

Problem – how do we count inversions

between sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count

when an element is moved from the upper array to the

solution
21

Use the merge algorithm to count

inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging

22

Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence”

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z

23

Closest Pair Problem (2D)

• Given a set of points find the pair of points

p, q that minimizes dist(p, q)

24

5

Divide and conquer

• If we solve the problem on two subsets,

does it help? (Separate by median x

coordinate)

d1 d2

25

Packing Lemma

Suppose that the minimum distance between

points is at least d, what is the maximum number of

points that can be packed in a ball of radius d?

26

Combining Solutions

• Suppose the minimum separation from the

sub problems is d

• In looking for cross set closest pairs, we

only need to consider points with d of the

boundary

• How many cross border interactions do we

need to test?

27

A packing lemma bounds the

number of distances to check

d

28

Details

• Preprocessing: sort points by y

• Merge step

– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most
d above

• Find lowest point on the other side that is at most d
below

• Compare with the points in this interval (there are
at most 6)

29

Identify the pairs of points that are compared

in the merge step following the recursive calls

30

6

Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)

31

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:
32

Recursive Multiplication Algorithm

(First attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:

33

Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

34

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let x = x1 2n/2 + x0 and y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)

Return a2n + (p – a – b)2n/2 + b

Recurrence: T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…
35

