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CSE 421

Introduction to Algorithms

Lecture 13,  Winter 2024

Dynamic Programming  
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Announcements

• Dynamic Programming Reading: 

– 6.1-6.2,  Weighted Interval Scheduling

– 6.3 Segmented Least Squares

– 6.4 Knapsack and Subset Sum 

– 6.6 String Alignment

– 6.8 Shortest Paths (Bellman-Ford)

– 6.9 Negative cost cycles 

• Midterm, Friday, Feb 9

– Material through 6.3 and HW 5

– Feb 8 Section will be Midterm review
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Dynamic Programming

• Key ideas

– Express solution in terms of a polynomial 

number of sub problems

– Order sub problems to avoid recomputation
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Optimal linear interpolation   

Error = S(yi –axi – b)2
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Optimal interpolation with k 

segments

• Optimal segmentation with three segments

– Mini,j{E1,i + Ei,j + Ej,n}

– O(n2) combinations considered

• Generalization to k segments leads to 

considering O(nk-1) combinations
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Optk[ j ] : Minimum error approximating 

p1…pj with k segments

How do you express Optk[ j ] in terms of 

Optk-1[1],…,Optk-1[ j ]?
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Optk[ j ] = min i { Optk-1[ i ] + Ei,j } for 0 < i < j

Optimal solution with k segments extends 

an optimal solution of k-1 segments on a 

smaller problem
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Optimal multi-segment interpolation

Compute Opt[ k, j ] for 0 < k < j < n

for j := 1 to n

Opt[ 1, j] = E1,j;

for k := 2 to n-1

for j := 2 to n

t := E1,j

for i := 1 to j -1

t = min (t, Opt[k-1, i ] + Ei,j)

Opt[k, j] = t
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Shortest Paths in Linear Graphs

• A directed graph with edge weights on the 

vertex set V = {1, 2, . . . N} is linear is all 

edges (i, j) ϵ E satisfy i < j
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Dynamic Programming for 

Shortest Paths in Linear Graphs
• D[ j ] = dist(1, j)

• What is the optimization equation?
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How many different ways can I 

walk to work?
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Only taking “efficient” routes

Make the problem discrete

Directed Graph model: 

Intersections and streets

Assume the graph is a 

directed acyclic graph (DAG)

Problem: compute the number 

of paths from vertex h to 

vertex w

P[v]: Number of paths from v to v0
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How do you compute 

P[v] if you know P[x], 

P[y], and P[z]?
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Recursive Algorithm
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PC(v){

if (v == v0)

return 1;

count = 0;

foreach (w in N+(v)){

count = count + PC(w);

}

return count;

}
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Ordering the vertices
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How do you order the vertices of a DAG 

such that if there is an edge from v to w,  

w comes before v in the ordering?

Path Counting
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CountPaths(G, P){

P[0] = 1;

for (i = 1 to n-1){

P[i] = 0;

foreach (w in N+(vi)){

P[i] = P[i] + P[w];    

}

}

G=(V,E) is an n node directed acyclic graph,  with vn-1, vn-2, . . ., 

v1, v0 a topological order of the vertices.  An array is computed 

giving the number of paths from each vertex to v0.

Typesetting

• Layout text on a page to optimize 

readability and aesthetic measures

• Skilled profession replaced by computing

• Goal – give text a uniform appearance 

which is primarily done by choosing line 

breaks to balance white space

– Interword spacing can stretch or shrink

– Hyphenation is sometimes available
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Optimal line breaking 

The LaTeX algorithm
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Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow 

of the line

– Quadratic measure often used

• Pen(i, j):  Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[m]: minimum penalty for ending a line 

with wm
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The quick brown 

fox jumped  over 

the    lazy     dog.

The  quick brown 

fox           jumped     

over the lazy dog.

Pen(“The quick brown”) = 1

Pen(“fox jumped over”)  = 2

Pen(“fox jumped”) = 8

Pen(“the lazy dog”) = 6

Pen(“over the lazy dog.”) = 4

Pen(i, j):  Penalty for putting wi, wi+1,…,wj on the same line

Optimal Line Breaking

Opt[m] = min i { Opt [ i ] + Pen(i+1,m)} for 0 < i < m

Optimal score for ending a line with wm

For words w1, w2, . . . , wn,   we compute Opt[n] to 

find the optimal layout 20

Optimal Line Breaking
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Opt[0] = 0;

for m = 1 to n {

Find i that minimizes Opt [ i ] + Pen(i+1,m);

Opt[m] = Opt [ i ] + Pen(i+1,m);

Pred[m] = i;

}


