
1

CSE 421

Introduction to Algorithms

Lecture 13, Winter 2024

Dynamic Programming

1

Announcements

• Dynamic Programming Reading:

– 6.1-6.2, Weighted Interval Scheduling

– 6.3 Segmented Least Squares

– 6.4 Knapsack and Subset Sum

– 6.6 String Alignment

– 6.8 Shortest Paths (Bellman-Ford)

– 6.9 Negative cost cycles

• Midterm, Friday, Feb 9

– Material through 6.3 and HW 5

– Feb 8 Section will be Midterm review
2

Dynamic Programming

• Key ideas

– Express solution in terms of a polynomial

number of sub problems

– Order sub problems to avoid recomputation

3

Optimal linear interpolation

Error = S(yi –axi – b)2

4

Optimal interpolation with k

segments

• Optimal segmentation with three segments

– Mini,j{E1,i + Ei,j + Ej,n}

– O(n2) combinations considered

• Generalization to k segments leads to

considering O(nk-1) combinations

5

Optk[j] : Minimum error approximating

p1…pj with k segments

How do you express Optk[j] in terms of

Optk-1[1],…,Optk-1[j]?

6

2

Optk[j] = min i { Optk-1[i] + Ei,j } for 0 < i < j

Optimal solution with k segments extends

an optimal solution of k-1 segments on a

smaller problem

7

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n

Opt[1, j] = E1,j;

for k := 2 to n-1

for j := 2 to n

t := E1,j

for i := 1 to j -1

t = min (t, Opt[k-1, i] + Ei,j)

Opt[k, j] = t

8

Shortest Paths in Linear Graphs

• A directed graph with edge weights on the

vertex set V = {1, 2, . . . N} is linear is all

edges (i, j) ϵ E satisfy i < j

9

3 -4

-4 5

5

6 5

3 -3 4

7

33

Dynamic Programming for

Shortest Paths in Linear Graphs
• D[j] = dist(1, j)

• What is the optimization equation?

10

How many different ways can I

walk to work?

11

Only taking “efficient” routes

Make the problem discrete

Directed Graph model:

Intersections and streets

Assume the graph is a

directed acyclic graph (DAG)

Problem: compute the number

of paths from vertex h to

vertex w

P[v]: Number of paths from v to v0

12

x

v

y z

How do you compute

P[v] if you know P[x],

P[y], and P[z]?

3

Recursive Algorithm

13

PC(v){

if (v == v0)

return 1;

count = 0;

foreach (w in N+(v)){

count = count + PC(w);

}

return count;

}

v6

v5
v4 v3

v1

v2

v0

Ordering the vertices

14

How do you order the vertices of a DAG

such that if there is an edge from v to w,

w comes before v in the ordering?

Path Counting

15

CountPaths(G, P){

P[0] = 1;

for (i = 1 to n-1){

P[i] = 0;

foreach (w in N+(vi)){

P[i] = P[i] + P[w];

}

}

G=(V,E) is an n node directed acyclic graph, with vn-1, vn-2, . . .,

v1, v0 a topological order of the vertices. An array is computed

giving the number of paths from each vertex to v0.

Typesetting

• Layout text on a page to optimize

readability and aesthetic measures

• Skilled profession replaced by computing

• Goal – give text a uniform appearance

which is primarily done by choosing line

breaks to balance white space

– Interword spacing can stretch or shrink

– Hyphenation is sometimes available

16

Optimal line breaking

The LaTeX algorithm

17

Optimal Line Breaking

• Words have length wi, line length L

• Penalty related to white space or overflow

of the line

– Quadratic measure often used

• Pen(i, j): Penalty for putting wi, wi+1,…,wj

on the same line

• Opt[m]: minimum penalty for ending a line

with wm

18

4

19

The quick brown

fox jumped over

the lazy dog.

The quick brown

fox jumped

over the lazy dog.

Pen(“The quick brown”) = 1

Pen(“fox jumped over”) = 2

Pen(“fox jumped”) = 8

Pen(“the lazy dog”) = 6

Pen(“over the lazy dog.”) = 4

Pen(i, j): Penalty for putting wi, wi+1,…,wj on the same line

Optimal Line Breaking

Opt[m] = min i { Opt [i] + Pen(i+1,m)} for 0 < i < m

Optimal score for ending a line with wm

For words w1, w2, . . . , wn, we compute Opt[n] to

find the optimal layout 20

Optimal Line Breaking

21

Opt[0] = 0;

for m = 1 to n {

Find i that minimizes Opt [i] + Pen(i+1,m);

Opt[m] = Opt [i] + Pen(i+1,m);

Pred[m] = i;

}

