CSE 421
Introduction to Algorithms

Richard Anderson
Lecture 16
Shortest Paths with Dynamic Programming
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Announcements

* Dynamic Programming Reading:
— 6.8 Shortest Paths (Bellman-Ford)

* Network Flow Reading

—7.1-7.3, Network Flow Problem and
Algorithms

—7.5-7.12, Network Flow Applications



Shortest Path Problem

* Dijkstra’s Single Source Shortest Paths
Algorithm

— O(m log n) time, positive cost edges
* Directed Acyclic Graphs

— O(n + m), Topological Sort + DP
» Bellman-Ford Algorithm

— O(mn) time for graphs which can have
negative cost edges



Lemma

* If a graph has no negative cost cycles,
then the shortest paths are simple paths

« Shortest paths have at most n-1 edges



Shortest paths with a fixed number
of edges

* Find the shortest path from s to w with
exactly k edges



EXpress as a recurrence

« Compute distance from starting vertex s

: Optk(w) = rnir]x [Optk-l(x) i Cxw]
* Opty(w) = 0 If w = s and infinity otherwise



Algorithm, Version 1

for each w

MJ[O, w] = Infinity;
MI[O, s] = 0;
fori=1ton-1

for each w

MIi, w] = min (M[i-1,x] + cost[x,w]);



Algorithm, Version 2

for each w

MJ[O, w] = Infinity;
MI[O, s] = 0;
fori=1ton-1

for each w

MIi, w] = min(M[i-1, w], min(M[i-1,x] + cost[x,w]));



Algorithm, Version 3

for each w
M[w] = Infinity;
M[s] = O;
fori=1ton-1
for each w

M[w] = min(M[w], min,(M[X] + cost[x,w]));
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Correctness Proof for Algorithm 3

« Key lemma — at the end of iteration I, for
allw, M[w] < M[i, w];
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Algorithm, Version 4

for each w

M[w] = Infinity;
MI[s] = O;
fori=1ton-1

for each w

for each x
If (M[w] > M[X] + cost[x,w])
Plw] = X;

Mlw] = M[X] + cost[x,w] ;
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Theorem

If the pointer graph has a cycle, then
the graph has a negative cost cycle
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If the pointer graph has a cycle, then
the graph has a negative cost cycle

 If P[w] = x then M[w] 2 M[X] + cost(x,w)
— Equal when w is updated
— MIX] could be reduced after update

« Letvy, V,,...v, be a cycle in the pointer graph
with (v,,v;) the last edge added
— Just before the update

’ M[Vj] 2 M[Vj+1] + COSt(Vj+1, Vj) for <k Vi Vg
* M[v,]> M[v,] + cost(v;, V)
— Adding everything up v, v,

* 0> cost(v,,Vv;) + cost(vs,V,) + ... + cost(vy, Vi)
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Negative Cycles

* If the pointer graph has a cycle, then the
graph has a negative cycle

* Therefore: if the graph has no negative
cycles, then the pointer graph has no
negative cycles
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Finding negative cost cycles

 What if you want to find negative cost cycles?
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What about finding Longest
Paths

« Can we just change Min to Max?
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Foreign Exchange Arbitrage

USD

USD |[EUR |CAD
USD |------ 08 |12
EUR |1.2 |---—--- 1.6
CAD 0.8 [|0.6 |[-----
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