
CSE 421

Introduction to Algorithms

Lecture 18

Winter 2024

Network Flow, Part 2

1

Outline

• Network flow definitions

• Flow examples

• Augmenting Paths

• Residual Graph

• Ford Fulkerson Algorithm

• Cuts

• Maxflow-MinCut Theorem

• Worst Case Runtime for FF

• Improving Runtime bounds
– Capacity Scaling

– Fully Polynomial Time Algorithms 2

Network Flow Definitions

• Flowgraph: Directed graph with distinguished

vertices s (source) and t (sink)

• Capacities on the edges, c(e) ≥ 0

• Problem, assign flows f(e) to the edges such

that:

– 0 ≤ f(e) ≤ c(e)

– Flow is conserved at vertices other than s and t

• Flow conservation: flow going into a vertex equals the flow

going out

– The flow leaving the source is a large as possible

3

Residual Graph

• Flow graph showing the remaining capacity

• Flow graph G, Residual Graph GR

– G: edge e from u to v with capacity c and flow f

– GR: edge e’ from u to v with capacity c – f

– GR: edge e’’ from v to u with capacity f

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

10

5 20

15

15

5

4

Augmenting Path Algorithm

• Augmenting path in residual graph

– Vertices v1,v2,…,vk

• v1 = s, vk = t

• Possible to add b units of flow between vj and vj+1

for j = 1 … k-1

u

s t

v

15/20

20/20

15/30

0/10

5/10

u

s t

v

5

15

10

5 20

15

15

5

5

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units of flow along path P in G

6

Runtime Analysis

• Assume the capacities are integers*

• Let C be the sum of edge capacities

leaving s

• The total flow F is at most C

• Every iteration increases flow by at least 1,

so there are at most C iterations

• Cost per iteration is O(m+n)

• Runtime is O(C(m+n))

7

* This is actually a very important assumption, but we are not going to explore this rabbit hole

Flow Example

a

s

d

b

c f

e

g

h

i

t

20

5

20 20

20

20

20

55

5
20

5 10

20

5

20

20

5

20

20

5

5

10

30

8

Cuts in a graph

• Cut: Partition of V into disjoint sets S, T with s in
S and t in T.

• Cap(S,T): sum of the capacities of edges from
S to T

• Flow(S,T): net flow out of S
– Sum of flows out of S minus sum of flows into S

• Flow(S,T) ≤ Cap(S,T)

9

What is Cap(S,T) and Flow(S,T)

a

s

d

b

c f

e

g

h

i

t

15/25

5/5

20/20 20/20

20/20

25/30

20/20

5/5

20/20

0/5

20/20

15/20

10/10

20/20

5/5

20/20

30/30

S={s, a, b, e, h}, T = {c, f, i, d, g, t}

0/5

0/20

0/5

0/5

0/5

0/5

0/10

10

What is Cap(S,T) and Flow(S,T)

a

s

d

b

c f

e

g

h

i

t

15/25

5/5

20/20 20/20

20/20

25/30

20/20

5/5

20/20

0/5

20/20

15/20

10/10

20/20

5/5

20/20

30/30

S={s, a, b, e, h}, T = {c, f, i, d, g, t}

0/5

0/20

0/5

0/5

0/5

0/5

0/10

Cap(S,T) = 95, Flow(S,T) = 80 – 15 = 65 11

Minimum value cut

u

s t

v

40

40

10

10

10

12

Find a minimum value cut

s t

6

6

10

7

3

5

3 6

2
4

5

8
5

4

8

13

Find a minimum value cut

s t

6

6

10

7

3

5

3 6

2
4

5

8
5

4

8

14

Find a minimum value cut

s t

6:5

6:5

10:3

7:6

3:3

5:5

3:3 6:5

2:2 4:4
5:4

8:3
5

4:3

8

15

MaxFlow – MinCut Theorem

• There exists a flow which has the same value as

the minimum cut

• Proof: Consider a flow where the residual graph

has no s-t path with positive capacity

• Let S be the set of vertices in GR reachable from

s with paths of positive capacity

s t

16

Let S be the set of vertices in GR reachable

from s with paths of positive capacity

s tu v

S T

What can we say about the flows and capacity

between u and v? 17

Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow

where the residual graph is disconnected,

hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin

by looking for a maximum flow.

18

History

• Ford / Fulkerson studied network flow in

the context of the Soviet Rail Network

19

Ford Fulkerson Runtime

• Cost per phase X number of phases

• Phases

– Capacity leaving source: C

– Add at least one unit per phase

• Cost per phase

– Build residual graph: O(m)

– Find s-t path in residual: O(m)

20

Performance

• The worst case performance of the Ford-

Fulkerson algorithm is horrible

u

s t

v

1000

1000

1

1000

1000

21

Improving path selection

22

u

s t

v

M

M

1

M

M

Better methods of finding

augmenting paths

• Find the maximum capacity augmenting

path

– O(m2log(C)) time algorithm for network flow

• Find the shortest augmenting path

– O(m2n) time algorithm for network flow

• Find a blocking flow in the residual graph

– O(mnlog n) time algorithm for network flow

23

Polynomial Time Algorithms

• Input of size n, runtime T(n) = O(nk)

• Input size measures

– Bits of input

– Number of data items

• Maximum item size C

– O(Cnk): Exponential

– O(nk log C): Polynomial

– O(nk): Fully polynomial

24

Capacity Scaling Algorithm

• Choose Δ = 2k such that all edges in GR

have capacity less than 2Δ

25

Edmonds-Karp: Easier analysis than Max Capacity First

while Δ ≥ 1

while there is a path P in GR with capacity Δ

Add Δ units of flow along path P in G

Update GR

Δ = Δ / 2

Analysis

• If capacities are integers, then graph is

disconnected when Δ = ½

• If largest edge capacity is C, then there

are at most log C outer phases

• At the start of each outer phase, the flow is

within 2mΔ of the maximum

– So there are at most 2m inner phases for

each Δ

26

Shortest Augmenting Path

• Find augmenting paths by BFS

27

for k = 1 to n

while there is a path P in GR of length k and capacity b > 0

Add b units of flow along path P in G

Update GR

• Need to show:

• The length of the shortest augmenting

path is non-decreasing

• Each while loop finds at most m paths

Analysis

• Augmenting along shortest path from s to t

does not decrease distance from s to t

28

Analysis

• The distance from s to t must increase in

GR after m augmentations by shortest

paths

29

Improving the shortest

augmenting path algorithm
• Find a blocking flow in one phase to

increase the length of augmenting paths

– Dinitz (Ефим Абрамович Диниц) Algorithm

– O(n2m)

• Dynamic Trees to decrease cost per

augmentation

– O(nm log n)

30

