Lecture19 # CSE 421 Introduction to Algorithms Lecture 19 Winter 2024 Network Flow, Part 3 #### Outline - Network flow definitions - Flow examples - Augmenting Paths - · Residual Graph - Ford Fulkerson Algorithm - Cuts - Maxflow-MinCut Theorem - Worst Case Runtime for FF - Improving Runtime bounds - Capacity Scaling - Fully Polynomial Time Algorithms - Applications of Network Flow ### Ford-Fulkerson Algorithm (1956) While not done Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units of flow along path P in G ### Ford Fulkerson Runtime Cost per phase X number of phases - Phases - Capacity leaving source: C - Add at least one unit per phase - Cost per phase - Build residual graph: O(m) - Find s-t path in residual: O(m) ### Performance The worst case performance of the Ford-Fulkerson algorithm O(Cm) ### Polynomial Time Algorithms - Input of size n, runtime T(n) = O(nk) - Input size measures - Bits of input - Number of data items - Maximum item magnitude C - -O(Cnk): Exponential - -O(nk log C): Polynomial - -O(nk): Fully polynomial ### Better methods of finding augmenting paths - Find the maximum capacity augmenting path - O(m²log(C)) time algorithm for network flow - Find the shortest augmenting path - − O(m²n) time algorithm for network flow - Find a blocking flow in the residual graph - -O(mnlog n) time algorithm for network flow ### Capacity Scaling Algorithm Choose Δ = 2^k such that all edges in G_R have capacity less than 2Δ while Δ ≥ 1 while there is a path P in G_R with capacity Δ Add Δ units of flow along path P in G Update G_R $\Delta = \Delta / 2$ Edmonds-Karp: Easier analysis than Max Capacity First Analysis (whine If capacities are integers, then graph is $O(m^2 \log n)$ disconnected when $\Delta = \frac{1}{2}$ - · If largest edge capacity is C, then there are at most log C outer phases - · At the start of each outer phase, the flow is within 2m∆ of the maximum - So there are at most 2m inner phases for each △ ### **Shortest Augmenting Path** Find augmenting paths by BFS ``` for k = 1 to n while there is a path P in G_R of length k and capacity b > 0 Add b units of flow along path P in G Update G_R ``` - Need to show: - The length of the shortest augmenting path is non-decreasing - Each while loop finds at most m paths # **Analysis** Augmenting along shortest path from s to t does not decrease distance from s to t ### **Analysis** The distance from s to t must increase in G_R after m augmentations by shortest paths # Improving the shortest augmenting path algorithm - Find a blocking flow in one phase to increase the length of augmenting paths - Dinitz (Ефим Абрамович Диниц) Algorithm - $-O(n^2m)$ - Dynamic Trees to decrease cost per augmentation - -O(nm log n) # APPLICATIONS OF NETWORK FLOW #### Problem Reduction - Reduce Problem A to Problem B - Convert an instance of Problem A to an instance of Problem B - Use a solution of Problem B to get a solution to Problem A - Practical - Use a program for Problem B to solve Problem A - Theoretical - Show that Problem B is at least as hard as Problem A ### Problem Reduction Examples Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers Construct an equivalent minimization problem #### Undirected Network Flow - Undirected graph with edge capacities - Flow may go either direction along the edges (subject to the capacity constraints) Construct an equivalent flow problem ### Bipartite Matching - A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y - A matching M is a subset of the edges that does not share any vertices - · Find a matching as large as possible ### Application - · A collection of teachers - A collection of courses - And a graph showing which teachers can teach which courses # Converting Matching to Network Flow # Finding edge disjoint paths Construct a maximum cardinality set of edge disjoint paths ### Multi-source network flow - Multi-source network flow - Sources s_1, s_2, \ldots, s_k - Sinks t_1, t_2, \ldots, t_j - Solve with Single source network flow # Resource Allocation: Assignment of reviewers - A set of papers P₁, . . ., P_n - A set of reviewers R₁, . . . , R_m - Paper P_i requires A_i reviewers - Reviewer R_i can review B_i papers - For each reviewer R_j, there is a list of paper L_{j1}, . . . , L_{jk} that R_j is qualified to review # Resource Allocation: Illegal Campaign Donations - Candidates C_i, . . ., C_n - Donate b_i to C_i - With a little help from your friends - Friends F₁, . . . , F_m - − F_i can give a_{ii} to candidate C_i - You can give at most Mito Fi