Lecture23

Announcements

- Reading Chapter 8
 - Focus 8.1-8.4
 - Skim 8.5-8.8
- Homework 9, Due Friday, March 8
- · Final, Monday, March 11

Background

- · P: Class of problems that can be solved in polynomial time
- NP: class of problems that can be solved in non-deterministic polynomial time
- Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notation: Y <_□ X
- Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time
- A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, Y <_p X
- If X is NP-Complete, Z is in NP and X < Z
 - Then Z is NP-Complete

NP Completeness: The story so far

Circuit Satisfiability is NP-Complete

Cook's Theorem

 The Circuit Satisfiability Problem is NP-Complete

- Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable
 - Non-deterministic choices of A encoded by values of inputs

Today

There are a whole bunch of other important problems which are NP-Complete

Populating the NP-Completeness

Universe

- Circuit Sat
- 3-SAT <_P Independent Set
- 3-SAT
- Independent Set <_P Clique
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_P Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines

NP-Complete NP-Com

Satisfiability

Literal: A Boolean variable or its negation.

 x_i or $\overline{x_i}$

Clause: A disjunction of literals.

 $C_i = x_1 \vee \overline{x_2} \vee x_3$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex:
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Yes: x_1 = true, x_2 = true x_3 = false.

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT ≤_p 3-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:

- $x_2 = \neg x_3 \Rightarrow \text{add 2 clauses:} \quad x_2 \lor x_3, \overline{x_2} \lor \overline{x_3} \\ x_1 = x_4 \lor x_5 \Rightarrow \text{add 3 clauses:} \quad x_1 \lor \overline{x_4}, x_1 \lor \overline{x_5}, \overline{x_1} \lor x_4 \lor x_5$ • $x_0 = x_1 \wedge x_2 \Rightarrow \text{ add 3 clauses:} \quad \frac{1}{x_0} \vee x_1, \quad \frac{1}{x_0} \vee x_2, \quad x_0 \vee x_1 \vee x_2 \vee x_2 \vee x_3 \vee x_4 \vee x_5 \vee x_5$
- Hard-coded input values and output value.
 - $x_5 = 0 \Rightarrow \text{add 1 clause: } \overline{x_5}$
 - $x_0 = 1 \Rightarrow \text{add 1 clause: } x_0$
- Final step: turn clauses of length < 3 into clauses of length exactly 3. .

output

Independent Set

 Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

14

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT≤p INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

k = 3

 $\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- Set these literals to true. ← and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf ← Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. •

Vertex Cover

Vertex Cover

- Graph G = (V, E), a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S
- Does G have a vertex cover of size at most k?

 Lemma: A set S is independent iff V-S is a vertex cover

 To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

Find a maximum independent set S

Show that V-S is a vertex cover

15 Cr Clique

Clique

 Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

Complement of a Graph

 Defn: G'=(V,E') is the complement of G=(V,E) if (u,v) is in E' iff (u,v) is not in E

IS <_P Clique

 Lemma: S is Independent in G iff S is a Clique in the complement of G

 To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

 Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

Reduction from 3-SAT

Traveling Salesman Problem

 Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Graph Coloring

- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring
- Polynomial
 - Graph 2-Coloring

