
CSE 421 Section 4

Divide and Conquer

Administrivia

Announcements & Reminders

● HW3
○ Due Yesterday, 1/24 @ 11:59pm

● HW4
○ Due Wednesday 1/31 @ 11:59pm

Writing a Divide and Conquer Algo

Divide and Conquer

1. Divide instance into subparts

2. Solve the parts recursively

3. Conquer by combining the answers

The keys to this strategy:

● Come up with a baseline!

● Once you have your algo, write a recurrence for the runtime

○ Your d&c runtime should be BETTER than the baseline runtime

The Strategy (hint: it’s the same as last week!)

1. Read and Understand the Problem

2. Generate Examples

3. Produce a Baseline

4. Brainstorm and Analyze Possible Algorithms

5. Write an Algorithm

6. Show Your Algorithm is Correct

7. Optimize and Analyze the Run Time

Problem 1 – Maximum Subarray Sum

Input: An array of ints (possibly both positive and negative)

Output: The largest possible sum of a (contiguous) subarray

𝐴[𝑖] + 𝐴[𝑖 + 1] +··· +𝐴[𝑗].

A single element counts as a subarray (the sum is the value of

that element). No elements counts as a subarray (the sum is 0).

1. Read and Understand the Problem

Reminder of the Questions to Ask:

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

● Are there any technical terms in the problem you should pay attention to?

Reminder of the Questions to Ask:

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

● Are there any technical terms in the problem you should pay attention to?

int[]

Reminder of the Questions to Ask:

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

● Are there any technical terms in the problem you should pay attention to?

int[]

int (the largest sum of any subarray)

Reminder of the Questions to Ask:

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

● Are there any technical terms in the problem you should pay attention to?

int[]

int (the largest sum of any subarray)

“subarray” means contiguous elements of the array

Key Idea with Divide and Conquer
(and other recursive algorithms)
● If you identify that you want to use a recursive algorithm paradigm like Divide and

Conquer, it’s not enough to just answer those key questions on the previous slide

● Since you know you will have recursive calls, you need to be explicit about what

those recursive calls are giving you that, when combined together, gives you the

solution you’re looking for

● You should be able to state a clear English definition of the return value you want

to get from the recursive calls, keeping in mind the return type, the optimality, and

the range & other parameters.

Problem 1.1 – Maximum Subarray Sum

What is a clear English definition of the return value from the recursive calls?

Work through this problem with the people around you, and then we’ll go over it together!

Problem 1.1 – Maximum Subarray Sum

What is a clear English definition of the return value from the recursive calls?

Problem 1.1 – Maximum Subarray Sum

What is a clear English definition of the return value from the recursive calls?

Each recursive call of the form SubarraySumDC(A[], i, j) returns the
largest sum of a contiguous subarray of A[], with all elements of the subarray
occurring between i and j.

2. Generate Examples

Good examples help with understanding now and
testing later!
● You should generate two or three sample instances and the correct associated

outputs.

● It’s a good idea to have some “abnormal” examples – consecutive negative

numbers, very large negative numbers, only positive numbers, etc.

● Note: You should not think of these examples as debugging examples – null or the empty list is not

a good example for this step. You can worry about edge cases at the end, once you have the main

algorithm idea. You should be focused on the “typical” (not edge) case.

Problem 1.2 – Maximum Subarray Sum

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

Work through generating some examples, and then we’ll go over it together!

Problem 1.2 – Maximum Subarray Sum

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

Problem 1.2 – Maximum Subarray Sum

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

[−3,−7, −2,−10] has a maximum subarray of [] with a sum of 0

[2, −100, 50, 3, −10, 17] has a maximum subarray of [50, 3, −10, 17] with a sum of 60

[1, 2, 3, 4] has a maximum subarray of [1, 2, 3, 4] with a sum of 10

[16, 20, −10, 4, 1, 0] has a maximum subarray of [16, 20] with a sum of 36

3. Come Up with a Baseline

Inefficient (non Divide and Conquer) First Attempt

● Review: In a time-constrained setting (like a technical interview or an exam) you often want

a “baseline” algorithm. This should be an algorithm that you can implement and will give

you the right answer, even if it might be slow.

● When you’re pretty sure you want to use a Divide and Conquer algorithm, this step

is extremely important! You need a (brute force) non Divide and Conquer baseline

(with a quick runtime analysis) so you can see whether all the recursive steps of

your Divide and Conquer algo are actually saving you any time!

Problem 1.3 – Maximum Subarray Sum

What is the first algorithm that comes to mind for the problem? What would

it’s running-time be? (Don’t try to do divide and conquer yet).

Problem 1.3 – Maximum Subarray Sum

What is the first algorithm that comes to mind for the problem? What would

it’s running-time be? (Don’t try to do divide and conquer yet).

Key idea: just check the sum of every possible subarray

Problem 1.3 – Maximum Subarray Sum
function NaiveBaseline(A[1..n])

bestSum ← −∞
for i from 1 to n do // i represents start index

for j from i to n do // j represents end index
sum ← 0
for k from i to j do // Find sum for A[i]+...+A[j]

sum += A[k]
if sum > bestSum then

bestSum ← sum
if bestSum < 0 then // handle all negative entries case

return 0 // empty subarray must be best here
return bestSum

Problem 1.3 – Maximum Subarray Sum
function NaiveBaseline(A[1..n])

bestSum ← −∞
for i from 1 to n do // i represents start index

for j from i to n do // j represents end index
sum ← 0
for k from i to j do // Find sum for A[i]+...+A[j]

sum += A[k]
if sum > bestSum then

bestSum ← sum
if bestSum < 0 then // handle all negative entries case

return 0 // empty subarray must be best here
return bestSum

Run-time: three for-loops going through the indices of the array, algo runs in 𝒪(𝑛3)

Problem 1.3 – Maximum Subarray Sum
function BetterBaseline(A[1..n])

bestSum ← −∞
for i from 1 to n do // i represents start index

sum ← 0
for j from i to n do // j represents end index

sum += A[j]
if sum > bestSum then

bestSum ← sum
if bestSum < 0 then // handle all negative entries case

return 0 // empty subarray must be best here
return bestSum

Problem 1.3 – Maximum Subarray Sum
function BetterBaseline(A[1..n])

bestSum ← −∞
for i from 1 to n do // i represents start index

sum ← 0
for j from i to n do // j represents end index

sum += A[j]
if sum > bestSum then

bestSum ← sum
if bestSum < 0 then // handle all negative entries case

return 0 // empty subarray must be best here
return bestSum

Run-time: by keeping track of the partial sum, we only need two for-loops going through
the indices of the array, so the algo runs in 𝒪(𝑛2)

4. Brainstorm and Analyze
Possible Algorithms

Think about How to Divide and Conquer

● Questions to help you brainstorm out your Divide and Conquer algo:

○ How do you want to split up the problem?

○ What is returned from the recursive calls? (hint: look back at part 1)

○ Imagine you have the answers from those recursive calls;

what is there still to handle?

● When you have time, it’s a good idea to try to run through your idea with some of

the examples you came up with earlier, and see whether you get the correct

output (especially as you try to transition from your brainstorming to formalizing

your algorithm)

Problem 1.4 – Maximum Subarray Sum

For each call SubarraySumDC(A[1..n]) answer these questions:

How do you want to split up the problem?

What is returned from the recursive calls?

Imagine you have the answers from those recursive calls; what is there still to handle?

Problem 1.4 – Maximum Subarray Sum

For each call SubarraySumDC(A[1..n]) answer these questions:

How do you want to split up the problem?

What is returned from the recursive calls?

Imagine you have the answers from those recursive calls; what is there still to handle?

Let’s just split the array in half! Make two recursive calls, one for each half (we don’t know
where the subarray is, so we’ll have to make both).

Problem 1.4 – Maximum Subarray Sum

For each call SubarraySumDC(A[1..n]) answer these questions:

How do you want to split up the problem?

What is returned from the recursive calls?

Imagine you have the answers from those recursive calls; what is there still to handle?

Let’s just split the array in half! Make two recursive calls, one for each half (we don’t know
where the subarray is, so we’ll have to make both).

Each recursive call will return the sum of the largest subarray among half the elements,
either 1,…n/2 or n/2+1,…n.

Problem 1.4 – Maximum Subarray Sum

For each call SubarraySumDC(A[1..n]) answer these questions:

How do you want to split up the problem?

What is returned from the recursive calls?

Imagine you have the answers from those recursive calls; what is there still to handle?

Let’s just split the array in half! Make two recursive calls, one for each half (we don’t know
where the subarray is, so we’ll have to make both).

Each recursive call will return the sum of the largest subarray among half the elements,
either 1,…n/2 or n/2+1,…n.

If the subarray “crosses” from one side to the other (i.e., includes both n/2 and n/2+1), it
hasn’t been checked yet. We still need to discover and check those.

5. Write an Algorithm

Translate the brainstorm into an algorithm!

● We need to take those ideas we were just noodling on and write them into an

algorithm!

● We can start with formalizing our ideas from earlier, but then we still need to figure

out how to deal with those subarrays that cross from one half to the other…

Translate the brainstorm into an algorithm!

● We need to take those ideas we were just noodling on and write them into an

algorithm!

● We can start with formalizing our ideas from earlier, but then we still need to figure

out how to deal with those subarrays that cross from one half to the other…

Key idea: If we know n/2 and n/2+1 are both included, then we know that

𝑖 <= 𝑛/2 and 𝑗 >= 𝑛/2 + 1. SO, 𝑖 and 𝑗 are “independent” of each other, and we can

optimize for them separately. Now, we can have two separate loops instead of nested

loops!

Problem 1.5 – Maximum Subarray Sum
function SubarraySumDC(A[1..n])

if n < 100 then
Run the baseline algorithm // or any other brute force

bestRecursiveSum ← max{SubarraySumDC(A[1..n/2]), SubarraySumDC(A[n/2+1..n])}
if bestRecursiveSum < 0 then

bestRecursiveSum ← 0
bestLeftSum ← −∞; leftSum ← 0
for i from n/2 down to 1 do

leftSum += A[i]
if leftSum > bestLeftSum then

bestLeftSum ← leftSum
bestLeftIndex ← i

bestRightSum ← −∞; rightSum ← 0
for j from n/2 + 1 to n do

rightSum += A[j]
if rightSum > bestRightSum then

bestRightSum ← rightSum
bestRightIndex ← j

crossSum ← bestRightSum + bestLeftSum
if crossSum > bestRecursiveSum then

return crossSum
return bestRecursiveSum

6. Show Your Algorithm is Correct

Problem 1.6 – Maximum Subarray Sum

Write a proof of correctness.

Work on this proof with the people around you, and then we’ll go over it together!

Problem 1.6 – Maximum Subarray Sum
We show that subarraySumDC(𝑖. . 𝑗) returns the maximum subarray sum by induction on 𝑛, the
length of the interval 𝑖. . 𝑗.

Base Case: If 𝑛 < 100, we run a brute force algorithm that checks every interval and returns the largest.
Since every interval is checked, we return the largest.

IH: Suppose that subarraySumDC returns the largest subarray sum for all intervals of length 1, 2,…𝑘,
𝑘 ≥ 99.

IS: Consider an array of length 𝑘 + 1. By the bound on 𝑘, we will hit our recursive case in the code. We
divide into cases, based on what the maximum subarray is:

Case 1: The maximum subarray is entirely in the left or right subarray
By IH, the recursive calls will return the sum of largest subarray in each half, so bestRecursiveSum
will hold our desired final answer. We will return bestRecursiveSum unless crossSum is larger, but
since crossSum always contains the sum of some subarray, it will not be larger in this case. Thus we
return the sum of the maximum subarray.

Problem 1.6 – Maximum Subarray Sum
Case 2: The maximum subarray crosses from the left to the right

Let the maximum subarray be from index 𝑖 to index 𝑗. By the assumption for this case,
𝑖 < 𝑛/2 < 𝑗. We claim that 𝑖 will be stored in bestLeftIndex by the end of the loop.
Suppose, for the sake of contradiction, that some other index 𝑖′ were stored. Then it must
have been that 𝐴[𝑖′] +··· +𝐴[𝑛/2] is greater than 𝐴[𝑖] +··· +𝐴[𝑛/2] . But then
𝐴[𝑖′] +··· +𝐴[𝑛/2] + 𝐴[𝑛/2 + 1] +··· +𝐴[𝑗] > 𝐴[𝑖] +··· +𝐴[𝑛/2] + 𝐴[𝑛/2 + 1] +··· +𝐴[𝑗],
which would make 𝑖′ … 𝑗 the maximum subarray (but we assumed that 𝑖 … 𝑗 was the
maximum), a contradiction. Thus 𝑖 is stored in bestLeftIndex. A symmetric argument will
show that bestRightIndex holds 𝑗.

We then will compare crossSum, which contains the sum from 𝑖 to 𝑗, to the values from the
recursive calls. By IH, the recursive calls contain sums of the maximum subarrays on the left
and right. By the assumption for this case, those are less than crossSum, so we return the
sum 𝐴[𝑖] +··· +𝐴[𝑗], as required.

7. Optimize and Analyze the Run Time

Problem 1.7 – Maximum Subarray Sum

Write the big-O of your code and justify the running time with a few sentences.

Problem 1.7 – Maximum Subarray Sum

Write the big-O of your code and justify the running time with a few sentences.

Note that the recursive case has two loops, each with 𝒪(n) iterations, doing constant work.
Since we make recursive calls on each half, we have the recurrence:

𝑇 𝑛 = ቐ
𝒪(1)

2𝑇
𝑛

2
+ 𝒪 𝑛

if 𝑛 < 100
otherwise

We have seen in class that this recurrence has the closed form 𝒪(𝑛 log 𝑛) (same as mergesort)

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 421 Section 4

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Writing an Algorithm
	Slide 4: Writing a Divide and Conquer Algo
	Slide 5: Divide and Conquer
	Slide 6: The Strategy (hint: it’s the same as last week!)
	Slide 7: Problem 1 – Maximum Subarray Sum

	1
	Slide 8: 1. Read and Understand the Problem
	Slide 9: Reminder of the Questions to Ask:
	Slide 10: Reminder of the Questions to Ask:
	Slide 11: Reminder of the Questions to Ask:
	Slide 12: Reminder of the Questions to Ask:
	Slide 13: Key Idea with Divide and Conquer (and other recursive algorithms)
	Slide 14: Problem 1.1 – Maximum Subarray Sum
	Slide 15: Problem 1.1 – Maximum Subarray Sum
	Slide 16: Problem 1.1 – Maximum Subarray Sum

	2
	Slide 17: 2. Generate Examples
	Slide 18: Good examples help with understanding now and testing later!
	Slide 19: Problem 1.2 – Maximum Subarray Sum
	Slide 20: Problem 1.2 – Maximum Subarray Sum
	Slide 21: Problem 1.2 – Maximum Subarray Sum

	3
	Slide 22: 3. Come Up with a Baseline
	Slide 23: Inefficient (non Divide and Conquer) First Attempt
	Slide 24: Problem 1.3 – Maximum Subarray Sum
	Slide 25: Problem 1.3 – Maximum Subarray Sum
	Slide 26: Problem 1.3 – Maximum Subarray Sum
	Slide 27: Problem 1.3 – Maximum Subarray Sum
	Slide 28: Problem 1.3 – Maximum Subarray Sum
	Slide 29: Problem 1.3 – Maximum Subarray Sum

	4
	Slide 30: 4. Brainstorm and Analyze Possible Algorithms
	Slide 31: Think about How to Divide and Conquer
	Slide 32: Problem 1.4 – Maximum Subarray Sum
	Slide 33: Problem 1.4 – Maximum Subarray Sum
	Slide 34: Problem 1.4 – Maximum Subarray Sum
	Slide 35: Problem 1.4 – Maximum Subarray Sum

	5
	Slide 36: 5. Write an Algorithm
	Slide 37: Translate the brainstorm into an algorithm!
	Slide 38: Translate the brainstorm into an algorithm!
	Slide 39: Problem 1.5 – Maximum Subarray Sum

	6
	Slide 40: 6. Show Your Algorithm is Correct
	Slide 41: Problem 1.6 – Maximum Subarray Sum
	Slide 42: Problem 1.6 – Maximum Subarray Sum
	Slide 43: Problem 1.6 – Maximum Subarray Sum

	7
	Slide 44: 7. Optimize and Analyze the Run Time
	Slide 45: Problem 1.7 – Maximum Subarray Sum
	Slide 46: Problem 1.7 – Maximum Subarray Sum

	Outro
	Slide 47: That’s All, Folks!

