
CSE 421 Section 8

Max Flow / Min Cut



Administrivia



Announcements & Reminders

● Midterm Exam
○ If you think something was graded incorrectly, submit a regrade request!
○ If you have concerns about your overall grade in the course, send an email course staff 

to discuss privately

● HW7 
○ Due tomorrow, Friday 2/23

● HW8
○ Due Friday 3/1



Ford-Fulkerson Algorithm



Finding the Max-Flow / Min-Cut

We use the Ford-Fulkerson algorithm to find Max-Flow / Min-Cut. 

Key Ideas:
● Keep searching through the residual graph to find a path from 𝑠 to 𝑡 that we can 

send more flow down.
● Keep updating the residual graph to track how much flow we can still push 

through and how much flow we can potentially reroute.
● When we can no longer reach 𝑡 in the residual graph, we can’t send any more flow, 

so the algorithm terminates!



Residual Graph

The residual graph indicates how much flow can still go along an edge, and how much 
flow we could potentially reroute back from an edge. 

Key ideas:
● the sum of the residual edges between any two nodes should be equal to the value 

of the edge between them in the original graph
● The residual edge pointing in the direction of the original edge should have a value 

equal to the amount of flow that could still pass through that edge
● The residual edge pointing in the opposite direction of the original edge should 

have a value equal to the amount of flow you have currently sent down that edge



Ford-Fulkerson (formally)

While (flow is not maximum)
 Run BFS in residual graph starting from 𝑠
 Record predecessors to find an 𝑠,𝑡-path
 Iterate through path, finding 𝑐 minimum residual capacity on path
 Add 𝑐 to every edge on path in flow
 Update residual graph



1. Go With the Flow



Problem 1 – Go With the Flow
Using Ford-Fulkerson, find the maximum 𝑠 − 𝑡 flow in the graph 𝐺 below, the 
corresponding residual graph, and list out the corresponding minimum cut.

Work through this problem with the people around you, and then 
we’ll go over it together!
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Start by making a copy of 
the original graph to be 
your residual graph!



Problem 1 – Go With the Flow
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Find a path from 𝑠 to 𝑡



Problem 1 – Go With the Flow
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Update the residual edges 
to push the maximum 
flow through
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Look to see if there is 
another path from 𝑠 to 𝑡
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Update the residual edges
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Update the residual edges
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Update the residual edges



Problem 1 – Go With the Flow
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Are there still any paths 
from 𝑠 to 𝑡?
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No more paths, so we’re 
done updating!
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All the residual edges going 
backwards show the flow we are 
sending down that path



Problem 1 – Go With the Flow
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We can put all these final 
flow values back into our 
original graph to see the 
maximum flow
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Now let’s find the min cut.
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The min cut is 𝑠 and the vertices you 
can reach from it in the residual 
graph on one side, and everything 
else on the other side.
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The edges going across the min cut 
from the s side to the t side all have 
flow up to their capacity, and the 
sum is equal to the max flow!
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The maximum flow is 14 

The 𝑠 − 𝑡 cut is 
({𝑠, 𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑡})



Max-Flow / Min-Cut Tricks



Max-Flow / Min-Cut

We can use the concepts of Max-Flow / Min-Cut and the Ford-Fulkerson algorithm to 
solve a wide variety of problems. Since we already have an algorithm, we can just call 
it like a library function. 

Most of the difficulty comes in taking a problem and turning it into a good graph so 
that max-flow / min-cut gives us the solution we are actually looking for. So how can 
we do it?



The Strategy

1. Read the Problem Carefully
2. Make a Basic Model
3. Brainstorm: How can you fix the graph?
4. Correctness and Running Time



The Tricks

We have three tricks that can be really helpful in converting a problem into a good 
form for max-flow or min-cut. Sometimes you only need one, but sometimes you can 
use them in a combination. There are other things you might need to do in a  given 
problem, but these are three very common tricks to try:

● Add “dummy vertices” for source or sink
● Split vertices to add vertex capacity
● Use infinite weight for edges that shouldn’t be considered for max-flow or min-cut



We have m professors and n graduate students. Each professor have a cap ci 
on the number of graduate students they can advise, and each graduate 
student have a specified set of interested professors that they would like to 
work with. 
Design a polynomial time algorithm that returns yes if there exists a valid 
advising schedule on students’ side (i.e. each student has exactly one advisor 
and advisors don't exceed the cap) or false if that's not possible. 



What if each professor also have a set of students that they would like to 
advise (i.e. professor may not accept all students)? 
What if students can request more than one professor? (Here we say an 
advising schedule is valid if each student gets exactly the number of 
professor they request as advisors)



Source: 421 sp22 hw7



● Use Konig Theorem to design algorithm and show correctness: For any bipartite 
graph, the size of maximum matching equals to the size of minimal vertex cover.

● What if we create a new kind of piece, Z. Define a position that are attacked by Z if  
it’s diagonally neighbored with Z. So in general, Z can attack 4 positions. Z works 
like Bishop, just that they can only attack positions on the diagonal one step away 
but not arbitrary many steps. 

● The problem is the same. Remove some cells and design a polynomial time 
algorithm that returns maximum number of non-attacking Zs. 



● Given a network flow instance with all integer capacity and a feasible flow 
with integer flow value f (but flow value on all edges are not necessarily 
integers), determine if there exists a flow with value f + 1 in O(m + n) time. 

● Do a B/DFS starting from s on residual graph. 
● Return true iff t is reachable.



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


