RNA Search and Motif Discovery

CSE 428
Computational Biology Capstone

Previous Lecture

Many biologically interesting roles for RNA RNA secondary structure prediction

proaches to Structure Prediction

Maximum Pairing

+ works on single sequences
+ simple
- too inaccurate

Minimum Energy

+ works on single sequences
- ignores pseudoknots
- only finds "optimal" fold

Partition Function

+ finds all folds
- ignores pseudoknots

Nu jredicion:
 omputation Order

$$
\begin{aligned}
& \quad \text { Or energy } \\
& B(i, j)=\# \text { pairs in optimal pairing of } r_{i} \ldots r_{j} \\
& B(i, j)=0 \text { for all } i, j \text { with } i \geq j-4 ; \text { otherwise } \\
& B(i, j)=\text { max of: } \\
& \left\{\begin{array}{l}
B(i, j-I) \\
\max \{B(i, k-l)+l+B(k+1, j-I) \mid \\
\left.i \leq k<j-4 \text { and } r_{k}-r_{j} \text { may pair }\right\}
\end{array}\right. \\
& \text { Time: } O
\end{aligned}
$$

Time: $O\left(n^{3}\right)$
Loop-based energy version is better; recurrences similar, slightly messier

Two possibilities

j Unpaired:
Find best pairing of $r_{i} \ldots r_{j-1}$

j Paired (with some k):
Find best $r_{i} \ldots r_{k-1}+$ best $r_{k+1} \ldots r_{j-1}$ plus I

Why is it slow?
Why do pseudoknots matter?

Today

Structure prediction via comparative analysis
Covariance Models (CMs) represent RNA sequence/structure motifs
Fast CM search
Motif Discovery
Applications in prokaryotes \& vertebrates

Approaches, II

Comparative sequence analysis

+ handles all pairings (potentially incl. pseudoknots)
- requires several (many?) aligned, appropriately diverged sequences
Stochastic Context-free Grammars
Roughly combines min energy \& comparative, but no pseudoknots
Physical experiments (x-ray crystalography, NMR)

Covariation is strong evidence for base pairing

A L19 (rplS) mRNA leader

Example: Ribosomal Autoregulation:

B

P2

nucleotide identity	nucleotide present
N 97\%	- 97\%
N 90\%	- 90%
N 75\%	- 75\%
	- 50\%
	stem loop ways present
\square compensatory mutations	
com	tible mutation

C
B. subtilis L19 mRNA leader

Mutual Information

$$
M_{i j}=\sum_{x i x j} f_{x i, x j} \log _{2} \frac{f_{x i, x j}}{f_{x i} f_{x j}} ; \quad 0 \leq M_{i j} \leq 2
$$

Max when no seq conservation but perfect pairing
MI = expected score gain from using a pair state (below)
Finding optimal MI, (i.e. opt pairing of cols) is hard(?)
Finding optimal MI without pseudoknots can be done by dynamic programming

M.I. Example (Artificial)

MI:	1	2	3	4	5	6	7	8	9
9	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0		
7	0	0	2	0.30	0	1			
6	0	0	1	0.55	1				
5	0	0	0	0.42					
4	0	0	0.30						
3	0	0							
2	0								
1									

Cols $1 \& 9,2 \& 8$: perfect conservation \& might be base-paired, but unclear whether they are. M.I. $=0$

Cols 3 \& 7: No conservation, but always W-C pairs, so seems likely they do base-pair. M.I. = 2 bits.

Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6 . M.I. $=1$ bit.

Figure 10.6 A mutual information plot of a tRNA alignment (top) shows four strong diagonals of covarying positions, corresponding to the four stems of the tRNA cloverleaf structure (bottom; the secondary structure of yeast phenylalanine tRNA is shown). Dashed lines indicate some of the additional tertiary contacts observed in the yeast tRNA-Phe crystal structure. Some of these tertiary contacts produce correlated pairs which can be seen weakly in the mutual information plot.

MI-Based Structure-Learning

Find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots
$S_{i, j}=\max \left\{\begin{array}{lr}S_{i, j-1} & \text { junpaired } \\ \max _{i \leq k<j-4} S_{i, k-1}+M_{k, j}+S_{k+1, j-1} & \text { jpaired }\end{array}\right.$
"Just like Nussinov/Zucker folding"
BUT, need enough data---enough sequences at right phylogenetic distance

Computational Problems

How to prediet secondary-structure How to model an RNA "motif"
(l.e., sequence/structure pattern)

Given a motif, how to search for instances
Given (unaligned) sequences, find motifs
How to score discovered motifs
How to leverage prior knowledge

Motif Description

RNA Motif Models

"Covariance Models" (Eddy \& Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids
Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate

Con: model building hard, search slow

Eddy \& Durbin I994: What

A probabilistic model for RNA families
The "Covariance Model"
~A Stochastic Context-Free Grammar
A generalization of a profile HMM
Algorithms for Training
From aligned or unaligned sequences
Automates "comparative analysis"
Complements Nusinov/Zucker RNA folding
Algorithms for searching

Main Results

Very accurate search for tRNA
(Precursor to tRNAscanSE - current favorite)
Given sufficient data, model construction comparable to, but not quite as good as, human experts
Some quantitative info on importance of pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence, you calculate likelihood ratio that the model could generate the sequence, vs a background model
You set a score threshold
Anything above threshold $\rightarrow \mathrm{a}$ "hit"
Scoring:
"Forward" / "Inside" algorithm - sum over all paths
Viterbi approximation - find single best path
(Bonus: alignment \& structure prediction)

Example:

 searching for tRNAs
number of hits

55

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.
M : Match states (20 emission probabilities)
l : \quad Insert states (Background emission probabilities)
D_{j} : Delete states (silent - no emission)

How to model an RNA "Motif"?

Conceptually, start with a profile HMM:
from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position given a new seq, estimate likelihood that it could be generated by the model, \& align it to the model

How to model an RNA "Motif"?

Add "column pairs" and pair emission probabilities for base-paired regions

Figure 5.2 The transition structure of a profile HMM.
Mj : Match states (20 emission probabilities)
l : \quad Insert states (Background emission probabilities)
D_{j} : Delete states (silent - no emission)

CM Structure

A: Sequence + structure
B: the CM "guide tree"

C: probabilities of letters/ pairs \& of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)

Overall CM Architecture

One box ("node") per node of guide tree
BEG/MATL/INS/DEL just like an HMM

MATP \& BIF are the key additions: MATP emits pairs of symbols, modeling basepairs; BIF allows multiple helices

CM Viterbi Alignment (the "inside" algorithm)

$x_{i} \quad=i^{\text {th }}$ letter of input
$x_{i j} \quad=\operatorname{substring} i, \ldots, j$ of input
$T_{y z}=P($ transition $y \rightarrow z)$
$E_{x_{i}, x_{j}}^{y}=P\left(\right.$ emission of x_{i}, x_{j} from state $\left.y\right)$
$S_{i j}^{y} \quad=\max _{\pi} \log P\left(x_{i j}\right.$ gen'd starting in state y via path $\left.\pi\right)$

CM Viterbi Alignment (the "inside" algorithm)

$S_{i j}^{y}=\max _{\pi} \log P\left(x_{i j}\right.$ generated starting in state y via path $\left.\pi\right)$

$$
S_{i j}^{y}= \begin{cases}\max _{z}\left[S_{i+1, j-1}^{z}+\log T_{y z}+\log E_{x_{i}, x_{j}}^{y}\right] & \text { match pair } \\ \max _{z}\left[S_{i+1, j}^{z}+\log T_{y z}+\log E_{x_{i}}^{y}\right] & \text { match/insert left } \\ \max _{z}\left[S_{i, j-1}^{z}+\log T_{y z}+\log E_{x_{j}}^{y}\right] & \text { match/insert right } \\ \max _{z}\left[S_{i, j}^{z}+\log T_{y z}\right] & \text { delete } \\ \max _{i<k \leq j}\left[S_{i, k}^{y_{l e f t}}+S_{k+1, j}^{y_{r i g h}}\right] & \text { bifurcation } \\ \multicolumn{2}{c}{\text { Time O(qn } 3 \text {), q states, seq len n }} \\ \text { compare: O(qn) for profile HMM }\end{cases}
$$

An Important Application: Rfam

Rfam - an RNA family DB Griffiths-Jones, et al., NAR '03, '05, '08

Was biggest scientific comp user in Europe 1000 cpu cluster for a month per release
Rapidly growing:
Rel 1.0, I/03: 25 families, 55 k instances

DB size:
Rel 7.0, 3/05: 503 families, 363 k instances
Rel 9.0, 7/08: 603 families, 636 k instances
Rel 9.1, I/09: 1372 families, 1148 k instances
Rel I0.0, I/IO: I446 families, 3193k instances ${ }^{\sim 160 G B}$

RF00037:

Example Rfam Family

Input (hand-curated):

MSA "seed alignment"
SS_cons
Score Thresh T
Window Len W

Output:

CM
scan results \& "full alignment"
phylogeny, etc.

Hom.sap. GUUCCUGCUUCAACAGUGUUUGGAUGGAAC Hom.sap. UUUCUUC. UUCAACAGUGUUUGGAUGGAAC Hom. sap. UUUCCUGUUUCAACAGUGCUUGGA. GGAAC Hom.sap. UUUAUC. . AGUGACAGAGUUCACU. AUAAA Hom.sap. UCUCUUGCUUCAACAGUGUUUGGAUGGAAC Hom.sap. AUUAUC. .GGGAACAGUGUUUCCC. AUAAU Hom.sap. UCUUGC. .UUCAACAGUGUUUGGACGGAAG Hom.sap. UGUAUC. . GGAGACAGUGAUCUCC. AUAUG Hom. sap. AUUAUC. .GGAAGCAGUGCCUUCC. AUAAU Cav. por. UCUCCUGCUUCAACAGUGCUUGGACGGAGC Mus.mus. UAUAUC. .GGAGACAGUGAUCUCC. AUAUG Mus.mus. UUUCCUGCUUCAACAGUGCUUGAACGGAAC Mus.mus. GUACUUGCUUCAACAGUGUUUGAACGGAAC Rat.nor. UAUAUC..GGAGACAGUGACCUCC.AUAUG Rat.nor. UAUCUUGCUUCAACAGUGUUUGGACGGAAC
SS_cons $\lll \ll \ldots$. . $\lll \lll \ldots$. . . . $\ggg \ggg \ggg \ggg>$

Motif Discovery

RNA Motif Discovery

Would be great if: given 100 complete genomes from diverse species, we could automatically find all the RNAs.
State of the art: that's hopeless
Hope: can we exploit biological knowledge to narrow the search space?

RNA Motif Discovery

More promising problem: given a 10-20 unaligned sequences of a few kb , most of which contain instances of one RNA motif of $100-200 \mathrm{bp}$-- find it.
Example: 5’ UTRs of orthologous glycine cleavage genes from γ-proteobacteria
Example: corresponding introns of orthogolous vertebrate genes

Orthologs = counterparts in different species

Approaches

Align-First: Align sequences, then look for common structure

Fold-First: Predict structures, then try to align them

Joint: Do both together

Pitfall for sequence-alignmentfirst approach

Structural conservation \neq Sequence conservation

Alignment without structure information is unreliable
CLUSTALW alignment of SECIS elements with flanking regions

Abstract

信 GGGATCATTGCAAGAGCAGCGTG--ACTGACATTA---TGAAGGCCTGTACTGAAGACAGCAA--GCTGTIAGTACAGACC---AGATG----CTTTCTTGGCAGGCTCGTTGTACCTCTTGGAAAACCTCAAT AGGTTTGCATTAATGAGGATTACACAGAAAACCTTT-GTTAAGGGTTTGTGTCGATCTGCTAA--TTGGCAAATTTTTATTTTTTAAAAT---ATTCTTACAGAAGAGTTCCATTTAAGAATGTTCGTGTATAGG AGTGTGCGGATGATAACTACTGACGAAAGAGTCATCGACTCAGTTAGTGGTTGGATGTAGTCACATTAGTTTGCCTCTCCCCATCTTTG----TCTCCCTGGCAAGGAGAATATGCGGGACATGATGCTAAGAG TGGACTGATAGGTA-GCCATGGC--TTCATCTGTC---ATG--TCTGCTTCTTTTTTATATTTG--TGTATGATGGTCACAGTGTAAA-G----TTCCCACAGCTGTGACTTGATTTTTTAA-AAATGTCGGAAGA TAAACTCGAACTCGAGCGGGCAATTGCTGATTACGA-TTAACCACTGATTCCTGGGTCGCTGC--TTCGTGGCCGTCGTCGGTTCCA-------TTTATCAACTATTAGCTCCAATACATAGCTACAGGTTTTT AAATTCTCGCTATATGACGATGGCAATCTCAAATGT-TCATTGGTTGCCATTTGATGAAATCAGTTTTGTGTGCACCTGATTGCAGAATTTTGTTTACCTTGCTCATTTTTTTCATTGAA-ACCACTTCTCAGA GGGGCGGGAGTACAAGGTGCGTGTGACTGGAGCCA---CCCACTCCGACTCTGCAGGTGTTTG--CAAATGACGACCGATTTTGAAATG----GTCTCACGGCCAAAAACTCGTGTCCGACATCAACCCCCTTC TTCTCCAGTGTTCTAGTTACATTGATGAGAACAGAA-ACATAAACTATGACCTAGGGGTTTCT--GTTGGATAGCTCGTAATTAAGAACGGAGAAAGAACAACAAAGACATATTTTCCAGTTTTTTTTCTTTAC CAAACTGATGGATA-GCCATTGGTATTCATCTATT---TTAACTCTGTGTCTTTACATATTTG--TTTATGATGGCCACAGCGTAAA-G----TACACACGGCTGTGACTTGATTCAAAA-GAAA TGAGCAACTTGTCT-GATGACTGGGAAAGGAGGAC---CTGCAACCATCTGACTTGGTCTCTG--TTAATGACGTCTCTCCCTCTAA-A----CCC-CATTAAGGACTGGGAGAGGCAGA-GCAAGCCTCAGAG GATTACTGGCTGCACTCTGGGGGGCGGTTCTTCCA---TGATGGTGTTTCCTCTAAATTTGCA--СGGAGAAACACCTGATTTCCAGGAAA-ATCCCCTCAGATGGGCGCTGGTCCCATCCATTCCCGATGCCT AGACCAGGCAAGACAACTGTGAGC-GCGATGGCCG---TGTACCCCAGGTCAGGGGTGGTGTC--TCTATGAAGGAGGGGCCCGAAG-----CCCTTGTGGGCGGGCCTCCCCIGAGCCCGTCTGTGGTGCCAG CACTTCAGAAGGCT-TCTGAATGGAACCATCTCTT---GACA-TTTGTTTCTATA-ATATTTG--T-CATGACAGTCACAGCATAAA-G----CGCAGACGGCTGTGACCTGATTTTAGA-AAATATTTTTTAGA

same-colored boxes should be aligned

Our Approach: CMfinder

Simultaneous local alignment, folding and CMbased motif description using an EM-style learning procedure

Yao, Weinberg \& Ruzzo, Bioinformatics, 2006

CMFinder

Simultaneous alignment, folding \& motif description Yao, Weinberg \& Ruzzo, Bioinformatics, 2006

CMfinder Accuracy

(on Rfam families with flanking sequence)

Discovery in Bacteria

A Computational Pipeline for HighThroughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes

Zizhen Yao ${ }^{1 *}$, Jeffrey Barrick ${ }^{2 a}$, Zasha Weinberg ${ }^{3}$, Shane Neph ${ }^{1,4}$, Ronald Breaker ${ }^{2,3,5}$, Martin Tompa ${ }^{1,4}$,

Walter L. Ruzzo ${ }^{1,4}$

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline

Zasha Weinberg ${ }^{1, \star}$, Jeffrey E. Barrick ${ }^{2,3}$, Zizhen Yao ${ }^{4}$, Adam Roth ${ }^{2}$, Jane N. Kim ${ }^{1}$, Jeremy Gore ${ }^{1}$, Joy Xin Wang ${ }^{1,2}$, Elaine R. Lee ${ }^{1}$, Kirsten F. Block ${ }^{1}$, Narasimhan Sudarsan ${ }^{1}$, Shane Neph ${ }^{5}$, Martin Tompa ${ }^{4,5}$, Walter L. Ruzzo ${ }^{4,5}$ and Ronald R. Breaker ${ }^{1,2,3}$

Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 20 extraneous ones (but not 5 in 200 or 2000) of length Ik or IOk (but not I00k)
Regulators often near regulatees (protein coding genes), which are usually recognizable cross-species So, look near similar genes ("homologs")
Many riboswitches, e.g., are present in ~ 5 copies per genome
(Not strategy used in vertebrates - 1000x larger genomes)

Processing Times

Input from ~70 complete Firmicute genomes available in late 2005-early 2006, totaling ~200 megabases

Table I: Motifs that correspond to Rfam families

$\begin{array}{\|cc\|} \hline \text { Rank } & \\ \hline \text { RAV CMF } & \text { FP } \\ \hline \end{array}$	Score	$\begin{gathered} \# \\ \text { RAV CMF } \\ \hline \end{gathered}$	ID Gene	Description CDD	Rfam
43107	3400	36711	9904 IlvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
$10 \quad 344$	3115	9622	13174 COG3859	Predicted membrane protein	RF00059 THI
$\begin{array}{llll}2 & 77 & 1284\end{array}$	2376	1126	11125 MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
3005	2327	$30 \quad 26$	9991 COG0116	Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP_bact_b
666	2228	4918	4383 DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
$\begin{array}{llll}7 & 145 & 952\end{array}$	1429	51	10390 GuaA	GMP synthase	RF00167 Purine
$\begin{array}{llll}8 & 17 & 108\end{array}$	1322	2913	10732 GcvP	Glycine cleavage system protein P	RF00504 Glycine
37749	1235	287	24631 DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact
101231358	1222	36	10986 CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin
201371133	899	32	9895 LysA	Diaminopimelate decarboxylase	RF00168 Lysine
$\begin{array}{llll}21 & 36 & 141\end{array}$	896	$22 \quad 10$	10727 TerC	Membrane protein TerC	RF00080 yybP-ykoY
39202684	664	25	11945 MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykok
$\begin{array}{llll}40 & 26 & 74\end{array}$	645	1918	10323 GlmS	Glucosamine 6-phosphate synthetase	RF00234 glms
531208192	561	215	10892 OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ${ }^{1}$
12299239	413	$10 \quad 7$	11784 EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD
255392281	268	8	10272 COG0398	Uncharacterized conserved protein	RF00023 tmRNA

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAV"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

Rfam		Membership			Overlap			Structure		
		\#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	$0.74{ }^{1}$	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	$0.56{ }^{1}$	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.
Membership: \# of seqs in overlap between our predictions and Rfam's, the sensitivity (Sn) and specificity (Sp) of our membership predictions. Overlap: the avg len of overlap between our predictions and Rfam's (nt), the fractional lengths of the overlapped region in Rfam's predictions (Sn) and in ours (Sp). Structure: the avg \# of correctly predicted canonical base pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of our predictions. ${ }^{1}$ After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%.

A L19 (rplS) mRNA leader

Example: Ribosomal Autoregulation:

B
P2

nucleotide identity	nucleotide present
N 97\%	- 97\%
N 90\%	- 90%
N 75\%	- 75\%
	- 50\%
	stem loop ways present
\square compensatory mutations	
com	tible mutation

B. subtilis L19 mRNA leader

Vertebrate ncRNAs

Some Results

Human Predictions

Evofold
S Pedersen, G Bejerano, A Siepel, K Rosenbloom, K Lindblad-Toh, ES Lander, J Kent, W Miller, D Haussler, "Identification and classification of conserved RNA secondary structures in the human genome."
PLoS Comput. Biol., 2, \#4 (2006) e33.

Some details below

CMfinder Search in Vertebrates

Extract ENCODE* Multiz alignments
Remove exons, most conserved elements. 56017 blocks, 8.7M bps.
Apply CMfinder to both strands.
10, 106 predictions, 6,587 clusters.
High false positive rate, but still suggests I000's of RNAs.
(We've applied CMfinder to whole human genome: many I00's of CPU years. Analysis in progress.)

* ENCODE: deeply annotated I\% of human genome

Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model Gerton Lunter, Chris P. Ponting, Jotun Hein, PLoS Comput Biol 2006, 2(1): e5.

Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection Majority (64\%) of candidates have >45\% G+C Strong P-value for their overlap w/ IPS

G + C	data	P	N	Expected	Observed	P-value	$\%$
$0-35$	igs	0.062	380	23	24.5	0.430	5.8%
$35-40$	igs	0.082	742	61	70.5	0.103	11.3%
$40-45$	igs	0.082	1216	99	129.5	0.00079	18.5%
$45-50$	igs	0.079	1377	109	162.5	$5.16 \mathrm{E}-08$	20.9%
$50-100$	igs	0.070	2866	200	358.5	$2.70 \mathrm{E}-31$	43.5%
all	igs	0.075	6581	491	747.5	$1.54 \mathrm{E}-33$	100.0%

Realignment

Alignment Matters

The original MULTIZ alignment without flanking regions. RNAz Score: 0.132 (no RNA)	
Chi	GGACATTTCAATGCGGGCTC-ATGGGGCTGTGAAGCCAAGAGCT
C	GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGGGAGCI
Dog	GGTCATtTCAAAGAGGGCTTTGTGGAACTA--AAACCAAGGGC
Rabbit	GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAGAACT----CTTAACTGTATGCCCAAAGATTAA
Rhes	GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGTAGGTCTIAACAGTATAACCAAAGA
	(()(()......(()(()(...(()...........)))..))))....)))
The local CMfinder re-alignment of the MULTIZ block. RNAz Score: 0.709 (RNA)	
Human	GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCA-----AGAGGTCTTAACAGTATGACCAAAA
Chimp	GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCCA-----AGAGCTAT
Cow	GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAA-CCG-----GGAGCTCTTAATGCTGTGACC
Dog	GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAA-CCA-----AGGGCTCTTAACTCTGTGACCAAATATTAG
Rabbit	GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCA-----AGAACTCTTAACTGTATGCCCAAAGATTAAA
Rhes	GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAAGAGG-TAGGTCTTAACAGTATAACCAAAGACTGA

I0 of II top (differentially) expressed

A

β-actin control RT+ RT- B

Scoring

An Evolutionary Tree (Phylogeny)

How to Score a Motif

evolutionary tree (phylogeny)
estimated branch lengths estimated rates of various base/
pair substitutions per unit len
alignment/structure
what is

$\operatorname{Pr}($ alignment given model)?

ncRNA Summary

ncRNA is a "hot" topic
For family homology modeling: CMs
Training \& search like HMM (but slower)
Dramatic acceleration possible
Automated model construction possible
New computational methods yield new discoveries
Many open problems

