

Polynomial time

Define P (polynomial-time) to be
${ }_{n}$ the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
$\mathbf{P}=\bigcup_{k \geq 0} \operatorname{TIME}\left(n^{k}\right)$

The complexity class NP

NP consists of all decision problems where
You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

And
No certificate can fool your polynomial time verifier into saying YES for a NO instance

NP

There are many natural, practical problems for which we don't know any polynomial-time algorithms
e.g. decisionTSP:

Given a weighted graph G and an integer \mathbf{k}, does there exist a tour that visits all vertices in \mathbf{G} having total weight at most k ?

More Precise Definition of NP

A decision problem is in NP iff there is a polynomial time procedure verify(...), and an integer k such that
for every input \mathbf{x} to the problem that is a YES instance there is a certificate c with $|\mathbf{c}| \leq|\mathbf{x}|^{\mathrm{k}}$ such that verify $(\mathbf{x}, \mathbf{c})=$ YES and
${ }_{n}$ for every input \mathbf{x} to the problem that is a NO instance there does not exist a certificate \mathbf{c} with $|\mathbf{c}| \leq|\mathbf{x}|^{k}$ such that verify $(\mathbf{x}, \mathrm{c})=$ YES

Keys to showing that a problem is in NP

What's the output? (must be YES/NO)
What must the input look like?
Which inputs need a YES answer?
Call such inputs YES inputs/YES instances
For every given YES input, is there a certificate that would help?
OK if some inputs need no certificate
For any given NO input, is there a fake certificate that would trick you?

Is it correct?

For every $\mathbf{x}=\langle\mathbf{G}, \mathbf{k}\rangle$ such that \mathbf{G} contains a k -clique, there is a certificate c that will cause verify (\mathbf{x}, \mathbf{c}) to say YES,
${ }_{n}$ C = a list of the vertices in such a \mathbf{k}-clique
And no certificate can fool verify (\mathbf{x}, \cdot) into saying YES if either
${ }_{n} \mathbf{X}$ isn't well-formed (the uninteresting case) ${ }^{n} \mathbf{X}=\langle\mathbf{G}, \mathbf{k}\rangle$ but \mathbf{G} does not have any cliques of size \mathbf{k} (the interesting case)

What We Know

Nobody knows if all problems in NP can be done in polynomial time, i.e. does $\mathbf{P}=\mathbf{N P}$?
${ }_{n}$ one of the most important open questions in all of science.
${ }_{n}$ huge practical implications
Every problem in \mathbf{P} is in $\mathbf{N P}$
one doesn't even need a certificate for problems in
\mathbf{P} so just ignore any hint you are given
Every problem in NP is solvable in exponential time

NP-hardness \&
 NP-completeness

Definition: A problem B is NP-hard iff every problem $A \in N P$ satisfies $A \leq_{p} B$

Definition: A problem B is NP-complete iff B is NP-hard and $B \in N P$

Even though we seem to have lots of hard problems in NP it is not obvious that such super-hard problems even exist!

Independent-Set \leq_{p} Clique

Given $\langle\mathbf{G}, \mathbf{k}\rangle$ as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
Transform to $\left\langle\mathbf{G}^{\prime}, \mathbf{k}\right\rangle$ where $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ has the same vertices as G but E^{\prime} consists of precisely those edges that are not edges of G
\mathbf{U} is an independent set in \mathbf{G}
$\Rightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

Satisfiability

Boolean variables $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ ${ }_{n}$ taking values in $\{\mathbf{0}, \mathbf{1}\}$. $\mathbf{0}=$ false, $\mathbf{1}=$ true Literals
${ }_{n} \mathbf{x}_{\mathrm{i}}$ or $\neg \mathrm{x}_{\mathrm{i}}$ for $\mathrm{i}=\mathbf{1}, \ldots, \mathrm{n}$
Clause
${ }_{n}$ a logical OR of one or more literals
${ }_{n}$ e.g. $\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)$
CNF formula ${ }_{n}$ a logical AND of a bunch of clauses

Satisfiability

CNF formula example
$n\left(\mathbf{x}_{1} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{7} \vee \mathrm{x}_{12}\right) \wedge\left(\mathbf{x}_{2} \vee \neg \mathrm{x}_{4} \vee \mathrm{x}_{7} \vee \mathrm{x}_{5}\right)$
If there is some assignment of 0 's and 1's to the variables that makes it true then we say the formula is satisfiable
${ }_{n}$ the one above is, the following isn't
$x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$
SAT: Given a formula F, is it satisfiable?

Recall this useful property of polynomial-time reductions

Theorem: If $\mathbf{A} \leq_{p} \mathbf{B}$ and $\mathrm{B} \leq{ }_{p} \mathbf{C}$ then

$$
\mathrm{A} \leq_{\mathrm{p}} \mathrm{C}
$$

Implications of Cook's Theorem?

There is at least one interesting superhard problem in NP

Is that such a big deal?
YES!
There are lots of other problems that can be solved if we had a polynomial-time algorithm for SAT
Many of these problems are exactly as hard as SAT

Steps to Proving Problem B is

NP-complete
Show B is NP-hard:
State: 'Reduction is from NP-hard Problem A'
${ }_{n}$ Show what the map f is
${ }_{n}$ Argue that f is polynomial time
${ }_{n}$ Argue correctness: two directions Yes for A implies Yes for \mathbf{B} and vice versa.

Show B is in NP

${ }_{n}$ State what certificate is and why it works
${ }_{n}$ Argue that it is polynomial-time to check.

Satisfiability \leq^{P} Independent-Set

F: $\left.\begin{array}{ccc}1 & 0 & 1 \\ \left(x_{1} \vee \neg x_{3} \vee x_{4}\right.\end{array}\right) \wedge\left(\begin{array}{ccc}1 & 0 & 1 \\ x_{2} \vee \neg x_{4} \vee x_{3}\end{array}\right) \wedge\left(\begin{array}{cc}x_{2} \vee \neg x_{1} \vee x_{3}\end{array}\right)$

U

Given assignment $x_{1}=x_{2}=x_{3}=x_{4}=1$, \mathbf{U} is as circled

Satisfiability \leq^{P} Independent-Set

F: $\left.\quad \begin{array}{ccc}0 & 1 & 0 \\ \left(x_{1} \vee \neg x_{3}\right. & x_{4}\end{array}\right) \wedge\left(\begin{array}{ccccc}? & 1 & 0 & ? & 1 \\ x_{2} \vee \neg x_{4} \vee & 0 \\ x_{3}\end{array}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$

Given U, satisfying assignment is $\mathrm{x}_{1}=\mathrm{x}_{3}=\mathrm{x}_{4}=\mathbf{0}, \mathrm{x}_{2}=\mathbf{0}$ or $\mathbf{1}$

The Simple Reduction

Transformation f maps
$\langle\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{k}\rangle$ to $\left\langle\mathbf{U}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathbf{m}}, \mathbf{k}^{\prime}\right\rangle$
${ }_{\mathrm{n}} \mathrm{U} \leftarrow \mathrm{E}$
${ }_{n}$ For each vertex $\mathbf{v} \in \mathbf{V}$ create a set $\mathbf{S}_{\mathbf{v}}$ containing all edges that touch \mathbf{v} $k^{\prime} \leftarrow k$
Reduction f is clearly polynomial-time to compute
We need to prove that the resulting algorithm gives the right answer.

Proof of Correctness

Two directions:
${ }_{n}$ If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $\mathbf{T}(\mathbf{G}, \mathbf{k})$ is YES

If a set \mathbf{W} of \mathbf{k} vertices covers all edges then the collection $\left\{\mathbf{S}_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\right\}$ of \mathbf{k} sets covers all of U
If the answer to Set-Cover on $\mathbf{T}(\mathbf{G}, \mathbf{k})$ is YES then the answer for Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES

If a subcollection $S_{v_{1}}, \ldots, S_{v_{k}}$ covers all of U then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a vertex cover in \mathbf{G}.

More Reductions

Show: Independent Set \leq_{p} Vertex-Cover ${ }_{n}$ Vertex-Cover:
${ }^{n}$ Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset \mathbf{W} of V of size at most \mathbf{k} such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G).

Independent-Set:
Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in U are joined by an edge.

Reduction Idea

Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{S}$ is an independent set iff V-S is a vertex cover Proof:
${ }_{n} \Rightarrow$ Let \mathbf{S} be an independent set in \mathbf{G}
Then S contains at most one endpoint of each edge of \mathbf{G}
At least one endpoint must be in V-S
V-S is a vertex cover
${ }^{n} \Leftarrow$ Let $\mathbf{W}=\mathrm{V}$-S be a vertex cover of \mathbf{G}
Then S does not contain both endpoints of any edge (else W would miss that edge)
\mathbf{S} is an independent set

	Problems we already know are NPcomplete
	Satisfiability
	Independent-Set
	Clique
	Vertex-Cover
	There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Problems we already know are NPcomplete

Satisfiability
Independent-Set
Clique
Vertex-Cover

There are 1000's of practical problems are NP-complete, e.g. scheduling optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?

Theorem: 3-SAT is NP-complete
Alternate Proof based on CNFSAT:
n 3 -SAT \in NP
Certificate is a satisfying assignment
Just like SAT it is polynomial-time to check the certificate

CNFSAT \leq p 3 -SAT

Reduction:
n map CNF formula F to another CNF formula \mathbf{G} that has precisely 3 variables per clause.

G has one or more clauses for each clause of F
G will have extra variables that don't appear in F
for each clause \mathbf{C} of \mathbf{F} there will be a different set of variables that are used only in the clauses of \mathbf{G} that correspond to \mathbf{C}

CNFSAT $\leq p 3$-SAT

Goal:
An assignment a to the original variables makes clause C true in F iff
there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true
Define the reduction clause-by-clause
We'll use variable names z_{j} to denote the extra variables related to a single clause \mathbf{C} to simplify notation
in reality, two different original clauses will not share z_{j}

Graph Colorability

Defn: Given a graph $G=(V, E)$, and an integer k, a k-coloring of G is
an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
3-Color: Given a graph $G=(V, E)$, does G have a 3-coloring?
Claim: 3-Color is NP-complete
Proof: 3-Color is in NP:
Hint is an assignment of red,green,blue to the vertices of G
${ }_{n}$ Easy to check that each edge is colored correctly

