

- Define P (polynomial-time) to be
- n the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
- $_{n}$ $\mathbf{P} = \mathbf{U}_{k>0} \mathsf{TIME}(\mathsf{n}^{k})$

The complexity class NP

NP consists of all decision problems where

You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

And

No certificate can fool your polynomial time verifier into saying YES for a NO instance

NP

- There are many natural, practical problems for which we don't know any polynomial-time algorithms
- e.g. decisionTSP:
 - □ Given a weighted graph **G** and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(.,.), and an integer k such that
 - for every input x to the problem that is a YES instance there is a certificate c with $|c| \le |x|^k$ such that verify(x,c) = YES
 - n for every input x to the problem that is a NO instance there does not exist a certificate **c** with $|\mathbf{c}| \le |\mathbf{x}|^k$ such that verify(x,c) = YES

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a YES answer?
 - n Call such inputs YES inputs/YES instances
- For every given YES input, is there a certificate that would help?
- n OK if some inputs need no certificate
- For any given NO input, is there a fake certificate that would trick you?

For every $\mathbf{x} = \langle \mathbf{G}, \mathbf{k} \rangle$ such that \mathbf{G} contains a \mathbf{k} -clique, there is a certificate \mathbf{c} that will cause $\mathbf{verify}(\mathbf{x}, \mathbf{c})$ to say \mathbf{YES} ,

c = a list of the vertices in such a k-clique

And no certificate can fool $verify(x, \cdot)$ into saying **YES** if either

- x isn't well-formed (the uninteresting case)
- x = (G,k) but G does not have any cliques of size k (the interesting case)

4

Solving NP problems without hints

- The only **obvious algorithm** for most of these problems is **brute force**:
 - h try all possible certificates and check each one to see if it works.
 - Exponential time:
 - ² truth assignments for **n** variables
 - n! possible TSP tours of n vertices
 - $\binom{n}{k}$ possible **k** element subsets of **n** vertices
 - etc.

4

What We Know

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does P=NP?
 - n one of the most important open questions in all of science.
 - huge practical implications
- Every problem in P is in NP
 - one doesn't even need a certificate for problems in **P** so just ignore any hint you are given
- Every problem in NP is solvable in exponential time

10

NP-hardness & NP-completeness

- Alternative approach to proving problems not in P
 - $_{\scriptscriptstyle \rm II}$ show that they are at least as hard as any problem in $\ensuremath{\text{NP}}$
- Rough definition:
 - A problem is NP-hard iff it is at least as hard as any problem in NP
 - n A problem is NP-complete iff it is both
 - . NP-hard
 - n in NP

NP-hardness & NP-completeness

- Definition: A problem B is NP-hard iff every problem A∈ NP satisfies A ≤_pB
- Definition: A problem B is NP-complete iff B is NP-hard and B

 NP
- Even though we seem to have lots of hard problems in **NP** it is not obvious that such super-hard problems even exist!

13

Reductions by Simple Equivalence

- n Show: Independent-Set ≤p Clique
- n Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.
- _n Clique:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge.

15

Independent-Set ≤_P Clique

- Given ⟨G,k⟩ as input to Independent-Set where G=(V,E)
- Transform to (G',k) where G'=(V,E')
 has the same vertices as G but E'
 consists of precisely those edges that
 are not edges of G
- U is an independent set in G
- ⇔ U is a clique in G'

16

Satisfiability

- Boolean variables $x_1,...,x_n$
 - n taking values in {0,1}. 0=false, 1=true
- _n Literals
- \mathbf{x}_i or $\neg \mathbf{x}_i$ for i=1,...,n
- _n Clause
 - n a logical OR of one or more literals
 - n e.g. $(\mathbf{x_1} \lor \neg \mathbf{x_3} \lor \mathbf{x_7} \lor \mathbf{x_{12}})$
- n CNF formula
 - n a logical AND of a bunch of clauses

17

Satisfiability

- CNF formula example
 - $_{\text{\tiny n}} \ (\textbf{X}_1 \lor \neg \textbf{X}_3 \lor \textbf{X}_7 \lor \textbf{X}_{12}) \land (\ \textbf{X}_2 \lor \neg \textbf{X}_4 \lor \textbf{X}_7 \lor \textbf{X}_5)$
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - n the one above is, the following isn't
- $\mathbf{x}_1 \wedge (\neg \mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\neg \mathbf{x}_2 \vee \mathbf{x}_3) \wedge \neg \mathbf{x}_3$
- SAT: Given a formula F, is it satisfiable?

Cook-Levin Theorem

Theorem (Cook-Levin 1971):
SAT∈P ⇔ P=NP

Follows by showing that **SAT** is **NP-**complete

19

Implications of Cook's Theorem?

- There is at least one interesting superhard problem in NP
- Is that such a big deal?
- YES!
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for SAT
 - Many of these problems are exactly as hard as SAT

20

Recall this useful property of polynomial-time reductions

Theorem: If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$

21

Cook-Levin Theorem & Implications

- Theorem: SAT is NP-complete
- Corollary: C is NP-hard \Leftrightarrow SAT \leq_{p} C

 or (or B \leq_{p} C for any NP-complete problem B)
- Proof:
 - If B is NP-hard then every problem in NP polynomial-time reduces to B, in particular SAT does since it is in NP
 - For any problem A in NP, A \leq_p SAT and so if SAT \leq_p C we have A \leq_p C.
 - n therefore C is NP-hard if SAT ≤pC

22

Steps to Proving Problem B is NP-complete

- Show **B** is **NP**-hard:
 - State:`Reduction is from NP-hard Problem
- ⁿ Show what the map **f** is
- n Argue that **f** is polynomial time
- Argue correctness: two directions Yes for A implies Yes for B and vice versa.
- _n Show B is in NP
 - ⁿ State what certificate is and why it works
 - Argue that it is polynomial-time to check.

23

Another NP-complete problem: Satisfiability ≤_pIndependent-Set

- A Tricky Reduction:
- mapping CNF formula F to a pair <G,k>
- _n Let **m** be the number of clauses of **F**
- $_{\scriptscriptstyle \rm L}$ Create a vertex in ${\bf G}$ for each literal in ${\bf F}$
- Join two vertices \mathbf{u} , \mathbf{v} in \mathbf{G} by an edge iff
 - u and v correspond to literals in the same clause of F, (green edges) or
 - u and v correspond to literals x and ¬x (or vice versa) for some variable x. (red edges).
- n Set k=m
- Clearly polynomial-time

Therefore (G,m) is a YES for independent set.

Therefore G has an independent set, U, of size at least

Satisfiability \leq pIndependent-Set

F: $(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ U

Given assignment $x_1 = x_2 = x_3 = x_4 = 1$,
U is as circled

Satisfiability ≤ PIndependent-Set

Correctness continued:

If (G,m) is a YES for Independent-Set then there is a set U of m vertices in G containing no edge.

Therefore U has precisely one vertex per clause because of the green edges in G.

Because of the red edges in G, U does not contain vertices labeled both x and ¬x

Build a truth assignment A that makes all literals labeling vertices in U true and for any variable not labeling a vertex in U, assigns its truth value arbitrarily.

By construction, A satisfies F

Therefore F is a YES for Satisfiability.

Reductions from a Special Case to a General Case

- Show: Vertex-Cover ≤p Set-Cover
- Vertex-Cover:
 - Given an undirected graph **G**=(**V**,**E**) and an integer **k** is there a subset **W** of **V** of size at most **k** such that every edge of **G** has at least one endpoint in **W**? (i.e. **W** covers all edges of **G**).
- Set-Cover:
 - Given a set **U** of **n** elements, a collection **S**₁,...,**S**_m of subsets of **U**, and an integer **k**, does there exist a collection of at most **k** sets whose union is equal to **U**?

31

The Simple Reduction

- Transformation f maps $\langle G=(V,E),k \rangle$ to $\langle U,S_1,...,S_m,k' \rangle$
 - .. U←E
 - For each vertex v∈ V create a set S_v containing all edges that touch v
 - ո k'←l
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer.

32

Proof of Correctness

- Two directions:
 - If the answer to Vertex-Cover on (G,k) is YES then the answer for Set-Cover on T(G,k) is YES
 - If a set **W** of **k** vertices covers all edges then the collection {**S**_v | **v**∈ **W**} of **k** sets covers all of
 - If the answer to Set-Cover on **T(G,k)** is YES then the answer for Vertex-Cover on **(G,k)** is YES
 - If a subcollection $\mathbf{S}_{v_1},...,\mathbf{S}_{v_k}$ covers all of \mathbf{U} then the set $\{\mathbf{v}_1,...,\mathbf{v}_k\}$ is a vertex cover in \mathbf{G} .

33

More Reductions

- Show: Independent Set ≤p Vertex-Cover
- Vertex-Cover:
 - Given an undirected graph **G**=(**V**,**E**) and an integer **k** is there a subset **W** of **V** of size at most **k** such that every edge of **G** has at least one endpoint in **W**? (i.e. **W** covers all edges of **G**).
- Independent-Set:
 - Given a graph G=(V,E) and an integer k, is there a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.

34

Reduction Idea

- Claim: In a graph **G**=(**V**,**E**), **S** is an independent set iff **V**-**S** is a vertex cover
- n Proof:
 - $_{\scriptscriptstyle \rm h} \implies$ Let **S** be an independent set in **G**
 - Then S contains at most one endpoint of each edge of G
 - At least one endpoint must be in V-S
 - V-S is a vertex cover
 - Let W=V-S be a vertex cover of G
 - Then S does not contain both endpoints of any edge (else W would miss that edge)
 - s is an independent set

35

Reduction

- $_{n}$ Map $\langle G,k \rangle$ to $\langle G,n-k \rangle$
 - Previous lemma proves correctness
- Clearly polynomial time
- We also get that
 - n Vertex-Cover ≤p Independent Set

Problems we already know are NPcomplete

- _n Satisfiability
- Independent-Set
- _n Clique
- Vertex-Cover
- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

37

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on x in 2|x| steps?
 - ⁿ Some require 2ⁿ, 2^{2ⁿ}, 2^{2^{2ⁿ}}, ... steps
 - And of course, some are just plain uncomputable

8

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?
- Theorem: 3-SAT is NP-complete
- n Alternate Proof based on CNFSAT:
 - . 3-SAT∈NP
 - ... Certificate is a satisfying assignment
 - Just like SAT it is polynomial-time to check the certificate

39

CNFSAT ≤p3-SAT

- Reduction:
 - map CNF formula **F** to another CNF formula **G** that has precisely **3** variables per clause.
 - G has one or more clauses for each clause of **F**
 - G will have extra variables that don't appear in F
 - for each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C

40

CNFSAT ≤_p3-SAT

- Goal
 - ^a An assignment **a** to the original variables makes clause **C** true in **F** iff
 - there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true.
- Define the reduction clause-by-clause
 - We'll use variable names **z**_i to denote the extra variables related to a single clause **C** to simplify notation
 - in reality, two different original clauses will not share $\boldsymbol{z_{j}}$

41

CNFSAT ≤_p3-SAT

- For each clause C in F:
 - n If C has 3 variables:
 - _n Put C in G as is
 - If C has 2 variables, e.g. $C=(x_1 \lor \neg x_3)$
 - Use a new variable z and put two clauses in G $(x_1 \lor \neg x_3 \lor z) \land (x_1 \lor \neg x_3 \lor \neg z)$
 - If original **C** is true under assignment **a** then both new clauses will be true under **a**
 - If new clauses are both true under some assignment **b** then the value of **z** doesn't help in one of the two clauses so **C** must be true under **b**

Graph Colorability

Defn: Given a graph G=(V,E), and an integer k, a k-coloring of G is

an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.

3-Color: Given a graph G=(V,E), does G have a 3-coloring?

Claim: 3-Color is NP-complete
Proof: 3-Color is in NP:

Hint is an assignment of red,green,blue to the vertices of G

Easy to check that each edge is colored correctly

More NP-completeness

- Subset-Sum problem
 - n Given **n** integers **w**₁,...,**w**_n and integer **W**
 - Is there a subset of the **n** input integers that adds up to exactly **W**?
- O(nW) solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time

55

3-SAT ≤_pSubset-Sum

- Given a 3-CNF formula with m clauses and n variables
- Will create 2m+2n numbers that are m+n digits long
 - _n Two numbers for each variable $\mathbf{x_i}$
 - $\mathbf{t_i}$ and $\mathbf{f_i}$ (corresponding to $\mathbf{x_i}$ being true or $\mathbf{x_i}$ being false)
 - _n Two extra numbers for each clause
 - $\begin{array}{c} \textbf{u}_{j} \text{ and } \textbf{v}_{j} \text{ (filler variables to handle } \\ \text{number of false literals in clause } \textbf{C}_{j}) \end{array}$

