CSE 431 Spring 2006 Assignment #3

Due: Friday, April 21, 2006

Reading assignment: Read Chapter 5 of Sipser's text. We will cover section 5.3 before we cover computation histories in section 5.1.

Problems:

1. Suppose that $A \subseteq \{\langle M \rangle \mid M \text{ is a decider TM}\}$ and that A is Turing-recognizable. (That is, A only contains descriptions of TMs that are deciders but it might not accept all such descriptions.)

Prove that there is a decidable language D such that $L(M) \neq D$ for any M with $\langle M \rangle \in A$. (Intuitively, this means that one couldn't come up with some restricted easy-to-recognize format for deciders that captured all decidable languages.)

(Hint: You may find it helpful to consider an enumerator for A.)

- 2. Let $T = \{\langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$. Show that T is undecidable.
- 3. Sipser's text (either edition), Problem 5.13.
- 4. Show that for all Turing-recognizable problems $A, A \leq_m A_{TM}$.
- 5. Sipser's text (1st edition problem 5.10; 2nd edition problem 5.24.
- 6. (Bonus) Let $\Gamma = \{0, 1, blank\}$ be the tape alphabet for all TMs in this problem. Define the busy beaver function $BB : \mathbb{N} \to \mathbb{N}$ as follows: For each value of k, consider all k-state TMs that halt when started with a blank tape. Let BB(k) be the maximum number of 1s that remain on the tape among all of these machines. Show that BB is not a computable function.