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NP-hardness & 
NP-completeness

n Definition: A problem B is NP-hard iff
every problem A∈∈∈∈NP satisfies A ≤≤≤≤PB

n Definition: A problem B is NP-complete
iff B is NP-hard and B ∈∈∈∈NP

n Even though we seem to have lots of hard 
problems in NP it is not obvious that such 
super-hard problems even exist!
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P and NP

NP

P

NP-complete

NP-hard
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Reductions by Simple Equivalence

n Show: Independent-Set ≤≤≤≤P Clique

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge.

n Clique:
n Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.
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Independent-Set ≤P Clique

n Given 〈G,k〉 as input to Independent-Set
where G=(V,E)

n Transform to 〈G’,k〉 where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that 
are not edges of G

n U is an independent set in G

⇔ U is a clique in G’
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Satisfiability

n Boolean variables x1,...,xn

n taking values in {0,1}.  0=false, 1=true

n Literals
n xi or ¬¬¬¬xi for i=1,...,n

n Clause
n a logical OR of one or more literals

n e.g. (x1 ∨ ¬¬¬¬x3 ∨ x7 ∨ x12)

n CNF formula

n a logical AND of a bunch of clauses
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Satisfiability

n CNF formula example

n (x1 ∨ ¬¬¬¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬¬¬¬x4 ∨ x7 ∨ x5)

n If there is some assignment of 0’s and 
1’s to the variables that makes it true 

then we say the formula is satisfiable

n the one above is, the following isn’t

n x1 ∧ (¬¬¬¬x1 ∨ x2) ∧ (¬¬¬¬x2 ∨ x3) ∧ ¬¬¬¬x3

n SAT: Given a formula F, is it 

satisfiable?
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Cook-Levin Theorem

n Theorem (Cook-Levin 1971):

SAT∈P ⇔ P=NP

Follows by showing that SAT is NP-complete
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Recall this useful property of 
polynomial-time reductions

n Theorem: If  A ≤≤≤≤PB and B ≤≤≤≤PC then        

A ≤≤≤≤PC  
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Cook-Levin Theorem & Implications

n Theorem: SAT is NP-complete

n Corollary: C is NP-hard ⇔ SAT ≤≤≤≤PC
n (or B ≤≤≤≤PC for any NP-complete problem B)

n Proof:

n If B is NP-hard then every problem in NP
polynomial-time reduces to B, in particular SAT
does since it is in NP

n For any problem A in NP, A ≤≤≤≤PSAT and so if SAT
≤≤≤≤PC we have A ≤≤≤≤P C.

n therefore C is NP-hard if SAT ≤≤≤≤PC
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Steps to Proving Problem B is       
NP-complete

n Show B is NP-hard:  
n State:`Reduction is from NP-hard Problem 

A’

n Show what the map f is

n Argue that f is polynomial time

n Argue correctness:  two directions Yes for 
A implies Yes for B and vice versa. 

n Show B is in NP
n State what certificate is and why it works

n Argue that it is polynomial-time to check.
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Another NP-complete problem:
Satisfiability ≤≤≤≤PIndependent-Set

n A Tricky Reduction:

n mapping CNF formula F to a pair <G,k>

n Let m be the number of clauses of F

n Create a vertex in G for each literal in F

n Join two vertices u, v in G by an edge iff

n u and v correspond to literals in the same 

clause of F, (green edges) or

n u and v correspond to literals x and ¬¬¬¬x (or vice 
versa) for some variable x.  (red edges).

n Set k=m

n Clearly polynomial-time



3

13

Satisfiability ≤≤≤≤p
Independent-Set

F:   (x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3
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Satisfiability ≤≤≤≤p
Independent-Set

n Correctness:

n If F is satisfiable then there is some assignment that 

satisfies at least one literal in each clause.  

n Consider the set U in G corresponding to the first satisfied 

literal in each clause.  

n |U|=m

n Since U has only one vertex per clause, no two vertices 

in U are joined by green edges

n Since a truth assignment never satisfies both x and ¬¬¬¬x,

U doesn’t contain vertices labeled both x and ¬¬¬¬x and so 
no vertices in U are joined by red edges

n Therefore G has an independent set, U, of size at least

m

n Therefore (G,m) is a YES for independent set.
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Satisfiability ≤≤≤≤p
Independent-Set

F:   (x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3

1       0      1         1      0      1         1       0      1

Given assignment x1=x2=x3=x4=1,

U is as circled

U
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Satisfiability ≤≤≤≤p
Independent-Set

n Correctness continued:
n If (G,m) is a YES for Independent-Set then there is 

a set U of m vertices in G containing no edge.

n Therefore U has precisely one vertex per 
clause because of the green edges in G.

n Because of the red edges in G, U does not 
contain vertices labeled both x and ¬¬¬¬x

n Build a truth assignment A that makes all 
literals labeling vertices in U true and for any 
variable not labeling a vertex in U, assigns its 
truth value arbitrarily.

n By construction, A satisfies F
n Therefore F is a YES for Satisfiability.
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Satisfiability ≤≤≤≤p
Independent-Set

F:   (x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3

Given U, satisfying assignment

is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0

18

Independent-Set is NP-complete

n We just showed that Independent-Set is NP-

hard and we already knew Independent-Set
is in NP.

n Corollary: Clique is NP-complete

n We showed already that                          

Independent-Set ≤≤≤≤P Clique and Clique is 

in NP.
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Reductions from a Special Case to a 
General Case

n Show: Vertex-Cover ≤≤≤≤P Set-Cover

n Vertex-Cover:
n Given an undirected graph G=(V,E) and an integer 

k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

n Set-Cover:
n Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k, does there exist 
a collection of at most k sets whose union is equal 
to U?
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The Simple Reduction

n Transformation f maps             
〈G=(V,E),k〉 to 〈U,S1,…,Sm,k’〉
n U←←←←E

n For each vertex v∈V create a set Sv
containing all edges that touch v

n k’←←←←k

n Reduction f is clearly polynomial-time to 
compute

n We need to prove that the resulting 
algorithm gives the right answer.
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Proof of Correctness

n Two directions:  

n If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on T(G,k) is YES

n If a set W of k vertices covers all edges then 

the collection {Sv | v∈∈∈∈ W} of k sets covers all of 
U

n If the answer to Set-Cover on T(G,k) is YES then 

the answer for Vertex-Cover on (G,k) is YES

n If a subcollection Sv1
,…,Svk

covers all of U then 

the set {v1,…,vk} is a vertex cover in G.
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More Reductions

n Show: Independent Set ≤≤≤≤P Vertex-Cover

n Vertex-Cover:
n Given an undirected graph G=(V,E) and an integer 

k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

n Independent-Set:
n Given a graph G=(V,E) and an integer k, is there a 

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.
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Reduction Idea

n Claim: In a graph G=(V,E), S is an 
independent set iff V-S is a vertex cover

n Proof:
n ⇒ Let S be an independent set in G

n Then S contains at most one endpoint of each 
edge of G

n At least one endpoint must be in V-S

n V-S is a vertex cover

n ⇐Let W=V-S be a vertex cover of G

n Then S does not contain both endpoints of any 
edge (else W would miss that edge)

n S is an independent set
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Reduction

n Map  〈G,k〉 to 〈G,n-k〉

n Previous lemma proves correctness

n Clearly polynomial time

n We also get that

n Vertex-Cover ≤≤≤≤P Independent Set
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Problems we already know are NP-
complete

n Satisfiability

n Independent-Set

n Clique

n Vertex-Cover

n There are 1000’s of practical problems 
that are NP-complete, e.g. scheduling, 

optimal VLSI layout etc. 
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A particularly useful problem for 
proving NP-completeness

n 3-SAT: Given a CNF formula F having 

precisely 3 variables per clause
(i.e., in 3-CNF), is F satisfiable?

n Theorem: 3-SAT is NP-complete

n Alternate Proof based on CNFSAT:

n 3-SAT∈∈∈∈NP

n Certificate is a satisfying assignment

n Just like SAT it is polynomial-time to check the 

certificate
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CNFSAT ≤≤≤≤P3-SAT

n Reduction:
n map CNF formula F to another CNF 

formula G that has precisely 3 variables 
per clause.

n G has one or more clauses for each 
clause of F

n G will have extra variables that don’t 
appear in F

n for each clause C of F there will be a 
different set of variables that are used only 
in the clauses of G that correspond to C
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CNFSAT ≤≤≤≤P3-SAT

n Goal:
n An assignment a to the original variables makes 

clause C true in F iff

n there is an assignment to the extra variables that 
together with the assignment a will make all new 
clauses corresponding to C true.

n Define the reduction clause-by-clause

n We’ll use variable names zj to denote the extra 
variables related to a single clause C to simplify 
notation

n in reality, two different original clauses will not 
share zj
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CNFSAT ≤≤≤≤P3-SAT

n For each clause C in F:
n If C has 3 variables:

n Put C in G as is
n If C has 2 variables, e.g. C=(x1 ∨∨∨∨ ¬¬¬¬x3)

n Use a new variable z and put two clauses in G
(x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ z) ∧ (x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ ¬¬¬¬z)

n If original C is true under assignment a then 
both new clauses will be true under a

n If new clauses are both true under some 
assignment b then the value of z doesn’t help 
in one of the two clauses so C must be true 
under b
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CNFSAT ≤≤≤≤P3-SAT

n If C has 1 variable: e.g. C=x1

n Use two new variables z1, z2 and put 4
new clauses in G
(x1 ∨∨∨∨ ¬¬¬¬z1 ∨∨∨∨ ¬¬¬¬z2) ∧ (x1 ∨∨∨∨ ¬¬¬¬z1 ∨∨∨∨ z2) ∧
(x1 ∨∨∨∨ z1 ∨∨∨∨ ¬¬¬¬z2)  ∧ (x1 ∨∨∨∨ z1 ∨∨∨∨ z2)

n If original C is true under assignment a
then all new clauses will be true under a

n If new clauses are all true under some 
assignment b then the values of z1 and 
z2 don’t help in one of the 4 clauses so
C must be true under b
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CNFSAT ≤≤≤≤P3-SAT

n If C has k ≥≥≥≥ 4 variables: e.g. C=(x1 ∨∨∨∨ ... ∨∨∨∨ xk)

n Use k-3 new variables z2,...,zk-2 and put k-2 new 
clauses in G
(x1 ∨∨∨∨ x2 ∨∨∨∨ z2) ∧ (¬¬¬¬z2 ∨∨∨∨ x3 ∨∨∨∨ z3) ∧ (¬¬¬¬z3 ∨∨∨∨ x4 ∨∨∨∨ z4) ∧ ... 
∧ (¬¬¬¬zk-3 ∨∨∨∨ xk-2 ∨∨∨∨ zk-2) ∧ (¬¬¬¬zk-2 ∨∨∨∨ xk-1 ∨∨∨∨ xk)

n If original C is true under assignment a then some 
xi is true for i ≤≤≤≤ k. By setting zj true for all j<i and 
false for all j ≥ i, we can extend a to make all new 
clauses true.

n If new clauses are all true under some assignment 
b then some xi must be true for i ≤ k because
z2 ∧ (¬¬¬¬z2 ∨∨∨∨ z3) ∧ ... ∧ (¬¬¬¬zk-3 ∨∨∨∨ zk-2) ∧ ¬¬¬¬zk-2 is not 
satisfiable
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Graph Colorability

n Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is
n an assignment of up to k different colors to the 

vertices of G so that the endpoints of each edge have 
different colors.

n 3-Color: Given a graph G=(V,E), does G have 
a 3-coloring?

n Claim: 3-Color is NP-complete

n Proof: 3-Color is in NP:
n Hint is an assignment of red,green,blue to the 

vertices of G

n Easy to check that each edge is colored correctly
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3-SAT ≤≤≤≤P3-Color

n Reduction:

n We want to map a 3-CNF formula 〈F〉〉〉〉 to a 

graph 〈G〉〉〉〉 so that

n G is 3-colorable iff F is satisfiable
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3-SAT ≤≤≤≤P3-Color

O

TF

Base Triangle
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause

(¬¬¬¬x
1 ∨∨∨∨

x
2 ∨∨∨∨

x
n )

(x
1 ∨∨∨∨ x

3 ∨∨∨∨ x
6 )
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3-SAT ≤≤≤≤P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

(¬¬¬¬x
1 ∨∨∨∨

x
2 ∨∨∨∨

x
n )

(x
1 ∨∨∨∨

x
3 ∨∨∨∨

x
6 )
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3-SAT ≤≤≤≤P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

(¬¬¬¬x
1 ∨∨∨∨

x
2 ∨∨∨∨

x
n )

(x
1 ∨∨∨∨

x
3 ∨∨∨∨

x
6 )
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

(¬x
1 ∨

x
2 ∨

x
n )

(x
1 ∨

x
3 ∨ x

6 )

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

F
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

(¬x
1 ∨

x
2 ∨

x
n )

(x
1 ∨

x
3 ∨ x

6 )

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

F

T
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

(¬x
1 ∨

x
2 ∨

x
n )

(x
1 ∨

x
3 ∨ x

6 )

Any 3-coloring of the graph yields a 

satisfying assignment to the formula

O

F

T

F

T
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More NP-completeness

n Subset-Sum problem

n Given n integers w1,…,wn and integer W

n Is there a subset of the n input integers 

that adds up to exactly W?

n O(nW) solution from dynamic programming 

but if W and each wi can be n bits long then 
this is exponential time
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3-SAT ≤≤≤≤PSubset-Sum

n Given a 3-CNF formula with m clauses 
and n variables

n Will create 2m+2n numbers that are 
m+n digits long
n Two numbers for each variable xi

n ti and fi (corresponding to xi being true 
or xi being false)

n Two extra numbers for each clause

n uj and vj (filler variables to handle 
number of false literals in clause Cj)
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3-SAT ≤≤≤≤PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C4=(x1∨¬∨¬∨¬∨¬ x2∨∨∨∨ x5)

… ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

… ….

1 1 1 1 …  1  3 3 3 3 … 3W


