CSE 431 Spring 2007
 Assignment \#2

Due: Friday, April 13, 2006
Reading assignment: Read Chapter 4 of Sipser's text.

Problems:

1. Show that both the decidable languages and the Turing recognizable languages are closed under the concatenation, intersection, and star operations.
2. Prove that a language is decidable if and only if there is an enumerator that enumerates it in lexicographic order. (Hint: Handle the case where the language is finite separately from the case when it is infinite.)
3. Use the result of question 2 to show that any infinite Turing-recognizable language contains an infinite decidable subset.
4. Let $I N F I N I T E_{P D A}=\{\langle M\rangle \mid M$ is a PDA and $L(M)$ is an infinite language $\}$. Show that INFINITE $E_{P D A}$ is decidable.
5. Show that the set of complex numbers,
$Q U A D R A T I C-R O O T=\left\{x \in \mathbb{C} \mid\right.$ there are integers $a \neq 0, b$, and c such that $\left.a x^{2}+b x+c=0\right\}$ is countable.
6. (Bonus) Let C be a language. Prove that C is Turing-recognizable iff there is a decidable language D such that $C=\{x \mid \exists y$ such that $\langle x, y\rangle \in D\}$.
